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1 Introduction

In the past few years various studies of aeroelastic systems have emerged. [1]
presents a detailed background and refers to a number of papers dealing with the
modelling and control of aeroelastic systems. The following provides a brief sum-
mary of this background.

Regarding the properties of aeroelastic systems one can find the study of free-
play non-linearity by Tang and Dowell in[2, 3], by Price et al. in [4] and [5], by Lee
et al. in [6], and a complete study of a class of non-linearities is in [7], [5]. O’'Neil
et al. [8] examined the continuous structural non-linearity of aeroelastic systems.
These papers conclude that an aerolesatic system may exhibit a variety of control
phenomena such dimit cycle oscillation, flutterand everchaotic vibrations

Control strategies have also been derived for aeroelastic systems. [9] and these
show that controllers, capable of stabilizing structural non-linearity over flow regimes,
can be derived via classical multivariable control methods. However, while several
authors have investigated the effectiveness of linear control strategies for aeroelas-
tic systems, experimental evidence has shown that linear control methods may not
be reliable when non-linear effects predominate. For example in the case of large
amplitude limit cycle oscillation behaviour the linear control methodologies [9] do
not stabilize aeroelastic systems consistently. [10] and [9] proposed non-linear feed-
back control methodologies for a class of non-linear structural effects of the wing
section [8]. Papers [10, 11, 1] develop a controller, capable of ensuring local asymp-
totic stability, via partial feedback linearization. It has been shown that by applying
two control surfaces global stabilization can be achieved. For instance, adaptive
feedback linearization [12] and the global feedback linearization technique were
introduced for two control actuators in the work of [1].

The primary goal of this paper is to develop non-linear state dependent con-
trol method capable of globally and asymptotically stabilizing a given prototypical
aerolelastic wing section via one control surface. The controller design is based
on the Tensor Product (TP) transformation introduced in [13, 14] and Parallel Dis-
tributed Dompensation (PDC) [15]. Our model incorporates the essential and well-



characterized structural non-linearities that yield limit cycle oscillation at low veloc-
ity. The control results are compared with the previously developed partial feedback
linearization technique that also utilizes one control surface.

2 Nomenclature

This section is devoted to introduce the notations being used in this dapbr: . .}:
scalar values. {a,b,...}: vectors. {A,B,...}: matrices. {4,3B,...}: tensors.
R'1<l2xxIN:yector space of real valugdh x I x --- x Iy)-tensors. Subscript de-
fines lower order: for example, an element of matkixat row-column numbet, j

is symbolized agA); j = &, ;. Systematically, théth column vector oA is denoted
asg,ie.A=[ar a ---|.ojjn,... areindiceso yn;,...: index upper bound:
for example:i=1.1, j=1..J,n=1.Noriy = L.In. A n-mode matrix of ten-
sor 4 € Rlr<l2xxIN - g %, U: n-mode matrix-tensor productq ®,Up: multiple
product asq x1 U; x2 Uz x3.. xn Uy. Detailed discussion of tensor notations and
operations is given in [16].

3 Equations of Motion

In this paper, we consider the problem of flutter suppression for the prototypical
aeroelastic wing section as shown in Figure 1. The aerofoil is constrained to have
two degrees of freedom, the plungend pitcha. The equations of motion of the
system have been derived in many references (for example, see [17], and [18]), and
can be written as
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and wherex, is the non-dimensional distance between elastic axis and the centre
of mass;m is the mass of the windy, is the mass moment of inertif; is semi-

chord of the wing, andy andcy, respectively are the pitch and plunge structural
damping coefficients, arkj, is the plunge structural spring constant. Traditionally,
there have been many ways to represent the aerodynamiclfaod momeniv,
including steady, quasi-steady, unsteady and non-linear aerodynamic models. In this
paper we assume the quasi-steady aerodynamic force and moment, see work [17].
It is assumed that andM are accurate for the class of low velocities concerned.
Wind tunnel experiments are carried out in [9]. In the above equaticnthe air
density,U is the free stream velocity,, andcy, respectively, are lift and moment
coefficients per angle of attack, ang andcy,, respectively are lift and moment
coefficients per control surface deflection, anig non-dimensional distance from

the mid-chord to the elastic axis. Several classes of non-linear stiffness contributions
ka(a) have been studied in papers treating the open-loop dynamics of aeroelastic
systems [2, 19, 20, 7]. For the purpose of illustration, we now introduce the use
of polynomial non-linearities. The non-linear stiffness teg(a) is obtained by
curve-fitting the measured displacement-moment data for non-linear spring as [21]:

ko(a) = 2.82(1— 2210 + 1315502 + 8583 + 1728970%).

The equations of motion derived above exhibit limit cycle oscillation, as well as
other non-linear response regimes including chaotic response [21, 19, 7]. The sys-
tem parameters to be used in this paper are given in [1] and are obtained from ex-
perimental models described in full detail in work by [21, 1].

With the flow velocityu = 15(m/s) and the initial conditions oft = 0.1(rad)
andy = 0.01(m), the resulting time response of the non-linear system exhibits limit
cycle oscillation, in good qualitative agreement with the behaviour expected in this
class of systems. Papers[21, 8] have shown the relations between limit cycle oscil-
lation, magnitudes and initial conditions or flow velocities.

Let the equations (1) and (2) be combined and reformulated into state-space



model form:

X1 h
. X2 . a
X= x| = | h and u=p
X4 a
Then we have:
) X
k= A+ B =5p) (3 ©)
where
X3 0
Xa 0
A — ) B = )
(p) —kixq — (k2U2 + p(Xz))Xz — C1X3 — CoXg (p) g3U 2
—kax1 — (KU 2+ dl(X2))X2 — C3X3 — CaXa VL

wherep € RN=2 contains values, andU. The new variables are tabulated in Table
1. One should note that the equations of motion are also dependent upon the elastic
axis locatiora.

Table 1: System variables
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4 Controller design method

The recently proposed very powerful numerical methods (and associated theory)
for convex optimizatiomvolving Linear Matrix Inequalities (LMI) help us with the
analysis and the design issues of dynamic systems models (3) in acceptable compu-
tational time [22, 23]. One direction of these analysis and design methods is based
on LMI's and PDC techniques [15], and functions with the multiple-model form. In
this paper we utilise the TP transformation and a PDC controller design technique
to derive viable control methodologies for the non-linear aeroelastic system defined
in the previous section. The key idea of the proposed design method is that the TP
transformation is utilized to represent the model (3) in multiple-model form with
specific characteristics, whereupon PDC controller design techniques can immedi-
ately be executed. The detailed description of the TP transformation and PDC based



designs is beyond the scope of this paper and can be found in [13, 14, 15]. First of
all, let us define the multiple-model form.

4.1 Multiple-model

This subsection defines the multiple model form of (3) as:

b)- @Wf(p)s*) (0) @

where basis functions fulfill:
R
vrp:w(p) €[0,1; and Vp: ZWr(p) =1 (5)
r

This defines a fixed polytope, where the system varie§(p) € {S1,S,...,Sr}-
MatricesS; € RO*! are termed vertex systems. Further, (5) defines the convex hull
of the vertex systems as:

S(p(t) = CO{SLSQ, e 7SR}W(p)7

where the row vectow(p) € RR contains the basis functiong (p). In many cases

the basis functionsy (p) are decomposed to dimensions, which leads to a higher
structure of (4). Having the decomposed basis the multiple-model (4) can be written,
in order to avoid complicated indexing, in terms of tensors as:

(5) = 2 wnion (7). 0

Here, the row vectown(pn) € R' contains the univariate basis functioms, (pn),
theN + 2 -dimensional coefficient tens@c R'1</2x*xINxOxl 5 constructed from
the vertex system matrice, i, iy € RO*!. The firstN dimensions ofS are as-
signed to the dimensions pf

4.2 TP transformation to multiple model [13,14]

The TP transformation has various options. Let us summarize here only those that
have prominent roles in this work:

(Wn=1.n(Pn),$) = TP_transf(S(p), Q), ()

where S(p) € R®*! is from the state-space model (3), afidc RN denotes the
bounded domain which the transformation is performed over. Veatg(s,) € R'»

and tensog are defined at (6). At this point, we should describe briefly the existence
of the exact TP transformation. In [24] it is shown that the multiple-model (6) is no-
where dense in the modelling space if the number of basis functions is bounded,



which is always the case in numerical implementations. The practical significance
of this is that the transformed multiple-model is only an approximation in general
cases:

. N X
N ng@lwn(pn) <u> : ®)

€ denotes the transformation error. It is zero if the given model can be transformed
exactly to multiple-model form. If exact representation does not exist then we
should employ as many basis functions as possible to ensuressrithé TP trans-
formation defines the relation betweegand the number of basis functions, which
helps us with optimising the number of basis functions, subject to an acceptable
error.

4.3 PDC controller design
The PDC design techniques determine one feedback to each vertex model:
K = PDC(S, stability_theorem).

"stability_theorem™ is a symbolic parameter. It specifies the stability criteria ex-
pressed in terms of matrix algebra or Linear Matrix Inequalities. The control per-
formance depends on the selected criteria. For instance, the speed of response,
constraints on the state vector or on the control value can also be set by properly
selected LMI based stability theorems. A large collection of such theorems is pre-
sented in [15]. Under the framework of vertex feedback systems, one can define the
control value as:

N
u= fﬂ(n@lwn(pn)x. 9)

5 Global asymptotic stability of the aeroelastic wing
section

This section is intended to perform the controller design method discussed in the
previous section to the present aeroelastic system defined in (3). First of all let us de-
fine the transformation spa€e We are interested in the intervdle [14, 25/(m/s)

and we presume that the intereaE [—0.03,0.03|(rad) is sufficiently large enough
(note that these intervals can arbitrarily be set). Therefore let:

Q: [14,25] x [~0.03,0.03]

in the present example. Executing the TP transformation (7), yields that the
dynamic model (3) can be represented exactly in TP model form (6) over a 3 times
2 basis. This means that the model in (3) can be described exaetl® {n (8)) by
the convex combination & x 2 = 6 linear vertex systems.

Having the multiple-model form we can execute the PDC design techniques.
Let us select one of the simplest PDC techniques detailed on page 58 of [15].



6 Control results

To demonstrate the performance of the controlled system a numerical experiment is
performed with free stream velocity = 20m/s, a velocity that exceeds the linear
flutter velocityU = 15.5m/s. Figure 2 shows the control results for initidis- 0.01

anda =0.1.
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Figure 2: Time response of derived controller b= 20m/sanda= —0.4.

7 Conclusion

In this paper we have applied a numerical control design method which is based on
the TP model transformation and PDC design methods, to design non-linear con-
trollers for prototype aeroelastic wing sections that includes structural non-linearity.
The control design utilises one control surface. Without any control effort, or with
linear controllers, the aeroelastic system reveals various kinds of non-linear phe-
nomenon including limit cycle oscillation as noted in various text. The proposed
controller design method globally and asymptot. As a further development of this
work the authors plan to design controllers for advantageous control performance.
Acknowledgement: This work is supported by Hungarian Foundation OTKA
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