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Abstract: Recently model based techniques have become wide spread in solving 
measurement, control, identification, etc. problems. For measurement data evaluation and 
for controller design also the so called inverse models are of considerable interest. In this 
paper a technique to perform neural network inversion is introduced. For discrete time 
inputs the proposed method provides good performance if the iterative inversion is fast 
enough compared to system variations, i.e. the iteration is convergent within the sampling 
period applied. The proposed method can be considered also as a simple nonlinear state 
observer, which reconstructs the selected inputs of the neural network from its outputs. 

1 Introduction 
In measurement and information processing systems the model based schemes 
play very important role. The basically linear approaches to fault diagnosis [1], 
optimal state estimation [2] and controller design are well understood and 
successfully combined with adaptive techniques (see. e.g. [3]) to provide optimum 
performance. There is a wide variety of possible models to be applied based on 
both classical methods [4] and recent advances in handling [5] information. 
Nonlinear techniques, however, are far from this maturity or still are not well 
understood. Furthermore, in a lot of cases, the exact mathematical model is not 
available or is too complex to be handled. Even if we can build usable models, in 
most of the cases they can be used only with limitations and are not universal 
enough to solve a larger family of nonlinear problems. In such cases soft 
computing based modeling can very effectively be used in different problems. The 
efforts on the field of fuzzy and neural network (NN) based modeling and control, 
however, seem to result in a real breakthrough also in this respect. 

Using model based techniques in identification, measurement, and control also the 
inverse models play an important role [3]. Serious research has been done e.g. in 
fuzzy model inversion, however in most of the cases inverse models can be 



derived only with direct limitations on the models applied (see e.g. [6] [7]). The 
inversion technique reported in [2] [8] follows a different approach and is based 
on the quite general concept of state observation widely used in measurement and 
filtering applications. The key element of this concept is to force a model of a 
physical system to "copy" the behavior of the system to be observed (see Fig. 1). 
This scheme is the so called observer structure which is a common structural 
representation for the majority of iterative data and signal processing algorithms. 
Traditionally the observer is a device to measure the states of dynamic systems 
having state variable representation. These states, however, can be regarded as 
unknown inputs, and therefore their "copy" within the observer as the result of 
model inversion. 

Concerning neural networks we can find just a few attempts for NN inversion (see 
e.g. [9] [10] [11]). Furthermore, we would like to note that most of the reported 
methods do not cover any universal and systematic approach, but can (very 
advantageously) be used to invert concrete neural network models. For example, 
such a method is the inversion of the NN based underwater acoustic model [12] 
and the proposed method can invert just the concrete kind of NNs. If we have 
other types of problems we have to design different inversion techniques for those 
types of NNs. 

In this paper a new, more universal neural network iteration technique is proposed 
which is very similar to the methods described in [2] [8]. Is also uses the observer 
based concept except that it is able to invert MIMO NN models. The paper is 
organized as follows: The possible role of inverse neural network models and the 
main features of the explicit inversion methods are described in Section 2. Section 
3 presents the observer based iterative inversion technique. A simple example 
illustrating the proposed method is given in Section 4, while Section 5 provides 
the conclusions. 

2 Inverse Neural Network Models 
Nowadays solving computer based measurement and control problems involves 
model-integrated computing. This integration means that the available knowledge 
finds a proper form of representation and becomes an active component of the 
computer program to be executed during the operation of the measuring and 
control devices. The role of the inverse models in measurements is obvious: 
observations are mappings from the measured quantity. This mapping is 
performed by a measuring channel the inverse model of which is inherent in the 
data/signal processing phase of the measurement. In control applications inverse 
plant models are to be applied as controllers in feedforward (open-loop) systems, 
as well as in various alternative control schemes. Additionally, there are very 



successful control structures incorporating both forward and inverse plant models 
(see e.g. [3]). 

 
Figure 1 

The observer concept 

When we refer to “inversion” of a neural network for the acquisition of certain 
input parameters, we are actually referring to a constrained inversion. That is to 
say, given the functional relationship of the NN input to the output, we have the 
forward and want to have the inverse relationships (see Fig. 2), where x1, x2,…,xn 
are the input of  the forward neural network model and y is the output vector of 
the model. Fig. 2b illustrates the inverse NN model, where output vector xs is 
composed of a subset of the input variables of the forward model. Given the 
forward relationship (Eq. 2) described in a neural network form, we wish to find 
an inverse mapping (Eq. 3). It is obvious from these figures that if the forward 
neural network model is available only the inverse (nonlinear static) mapping 
must be derived. There are different alternatives to perform such a derivation. One 
alternative is to invert the neural network model using the classical regression 
technique based on input-output data. To solve this regression problem iterative 
algorithms can also be considered. The result of such a procedure is an 
approximation of the inverse and the accuracy of this approximation depends on 
the efficiency of the model fitting applied. 
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Figure 2 

Forward and inverse neural network models. 
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3 Concept of the Observer Based Iterative Inversion 
The general concept of the observer is represented by Fig. l. The physical system 
produces output y and we suppose that its behavior can be described by a dynamic 
system model. This system description becomes the inherent part of the 
measurement procedure and is forced to behave similarly to the physical system. 
If the correction (forcing) mechanism is appropriate the observer will converge to 
the required state and will produce the estimate of the unknown input. The 
strength of this approach is that this iterative evaluation is easy to implement, e.g., 
using standard digital signal processors. The complete system can be embedded 
into a real-time environment, the necessary number of iterations to get the inverse 
can be performed within one sampling time slot of the measurement or control 
application. For the correction several techniques can be proposed based on the 
vast literature of numerical methods (see e.g. [13]) since the proposed iterative 
solution is nothing else than the numerical solution of a single (or multi) variable 
nonlinear equation (system). 
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Figure 3 

Block diagram of the iterative inversion scheme for the three input two output example, 
where ),( 21 yy=y  and )ˆ,ˆ(ˆ 21 yy=y are the output vectors. 

The iteration is based on the following general formula: 

](.),),(ˆ),,ˆ([)(ˆ)1(ˆ µfnCcorrectionnn xyyxx +=+  (1) 

where f(.) stands for nonlinear function to be inverted, C is some kind of error 
function between the “real” and estimated output, and µ denotes the step size. 
When we refer to “inversion” of a NN implementing y=f(x) for the acquisition of 
certain input parameters, we are not merely trying to find x=f-1(y), rather having 
the forward relationship (2) in an NN form we are looking for the inverse 
relationship (3). 

),( uxy f=  (2) 

),( uyx g=  (3) 

Here x stands for the unknown environmental parameters we wish to obtain, and u 
denotes a vector of the known environmental and system parameters. In Fig. 3 a 
three input two output example can be followed. 

In the simplest case, as iteration method we can use the Newton iteration, which 
has the form of: 

))(()()1( nCnn xxx ∇−=+ µ  (4) 

where x denotes the for input vector of the unknowns and C stands for mean 
square error function used by the iteration process: 

( )∑ −=
i

ii yyC 2ˆ),ˆ( yy . (5) 

Since usually we do not know the exact mathematical description of the cost 
function, the partial derivatives of function C must be evaluated locally using 
simple numerical techniques: 
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The computational complexity of this iterative procedure depends mainly on the 
complexity of the forward neural network model itself. It is anticipated, however, 
that after the first convergence if the input of this observer changes relatively 
smoothly then relatively few iterations will be required to achieve an acceptable 
inverted value. 

Unfortunately, the simple Newton iteration may fail if the error function C has 
multiple minima. This is because gradient-based techniques work using locally 
available information. If multiple minima may occur, global search techniques are 
to be applied. For decreasing the computational complexity of the iteration we can 
also use the combined technique described in [8], which means that the iteration is 
based on the simple Newton technique but if it fails it is switched to a global e.g. 
genetic algorithm based method. Our examinations show that the computational 
complexity of the method is in the range of the complexity of the simple Newton 
iteration, thus the introduction of the combined technique results in significant 
improvement in the convergence property with only a tolerable increase of the 
computational complexity. 

4 Examples 
In this section, to illustrate the proposed iterative inversion method, a simple 
example with a three input two output forward NN model is presented (see Fig. 3). 
The purpose of this model is to describe the dependency of the 3D point 
coordinates and its 2D projection. This mapping is very important at the 3D object 
reconstruction from digital images [14]. 

The 3D point M projects to the image point m (see Fig. 4a). The orthogonal 
projection of camera position C onto an image plane Ω is the principal point O 
and axis z corresponding to this projection line is called principal axis. 



x

y

z

C

m

M

S

O

 
Figure 4a 

Illustration of 3D point M and its projection m in the image plane Ω. The position of the 
camera is at the origin of the coordinate system 

 
Figure 4b 

Illustration of the camera movement, which causes the change of the elements of the 
projection matrix. 

(f-focal length, Xc,Yc,Zc – camera position and orientation, Xw,Yw,Zw – world coordinate-
system) 

As we know, the projection of M onto an image plane is unambiguous. Inversely 
it is not valid. To an image point a line corresponds in the 3D space, not a single 
point, thus this mapping is not unambiguous and therefore to invert this mapping 
it is necessary to perform some modifications. To solve this problem one from the 
3D point coordinates should be given. That means, if we have the image point 
coordinates of the projection of a 3D point M and also one coordinate component 
of the point M is given, then it is possible to perform unambiguous mapping from 
2D to 3D. If the center of projection is at the origin C of the 3D reference frame of 
the space and the image plane is parallel to the xy plane and displaced a distance f 
(focal length) along the z axis from the origin, then the projection of a 3D point 
M=[X,Y,Z,1] with homogeneous coordinates can be calculated as: 
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where f is the focal length, s stands for the scale factor and x, y denote the 
coordinates of the projection m in the image plane. In real images, the origin of 
the image coordinates is not the principal point and the scaling along each image 
axis is different, so the image coordinates undergo a further transformations as 
rotation and shifting (see Fig. 4b). In this case the projection matrix can be 
described by the following matrix [14]: 
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where a, b,…,l represent the entries of the perspective projection matrix. 

As an example, we implemented the projection and its inverse operation by NNs. 
We used a system where the camera is not at the center of the world coordiante 
system (see Fig. 4b). In the illustrated example the projection matrix was chose to 
[1 1 2 0; 3 1 2 0; 1 4 1 0]. The Z component of the 3D point coordinates was 
chosen for 10. For the training of our feedforward backpropagation neural network 
we used sample pairs in which the input are the 3D point coordinates while the 
output their projections. For simplicity, the focal length is chosen for 1. The 
network has 2 hidden layers with 15 neurons. The searched X, Y values, which are 
the output of the inverse NN correspond to the minimum of the error surface (the 
simplest case is illustrated in Fig. 5 while in Fig. 6 a more general problem is 
shown). The searching procedure is performed according to the iterative searching 
algorithm described above. Figs. 7, 8 represent the output of the forward NN, 
while in Figs. 9,10 the output of the inverse NN can be followed. Fig 11 illustrates 
the mean square error (MSE) of the inversion, i.e. the MSE of the obtained 3D 
point (by the inversion) compared to the original one which was projected to the 
plain. 



 
Figure 5 

The surface of the error function C in the case when the position of the camera is at the 
origin of the world coordinate system. 

 
Figure 6 

The surface of the error function C in the case when the position of the camera is not at the 
origin of the world coordinate system. (Projection matrix: [1 1 2 0; 3 1 2 0; 1 4 1 0]). 

 
Figure 7 

The x component of the output of the forward neural network model. 
(Projection matrix: [1 1 2 0; 3 1 2 0; 1 4 1 0]). 



  
Figure 8 

The y component of the output of the forward neural network model. 
(Projection matrix: [1 1 2 0; 3 1 2 0; 1 4 1 0]). 

 
Figure 9 

The output X values of the inverse NN 

 
Figure 10 

The output Y values of the inverse NN 



 
Figure 11 

The mean square error of the inversion 

Conclusions 

In this paper an iterative method has been presented to solve the inversion of 
neural network models for identification, measurement, and control, etc. 
applications. The derivation of this iterative technique is related to the state 
observer concept. The proposed technique can effectively be used for different 
kind of feedforward MIMO NN models. 
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