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Abstract. Two extensions of classical Shepard operators to the fuzzy case are pre-

sented. We study Shepard-type interpolation/approximation operators for functions

with domain and range in the fuzzy number’s space and max-product approximation

operators. Error estimates are obtained in terms of the modulus of continuity.

1 Introduction

In [16] it is proposed the problem of interpolating some fuzzy data. Since then
many results in this sense are obtained. For the crisp input fuzzy output case
(i.e. fuzzy-number-valued functions), in [7] and [10], the Lagrange interpolation
polynomials are constructed, in [5] and [9] Bernstein approximation is studied
and in [1] Jackson-type trigonometric polynomials are presented. Recently, in
[2], Shepard approximation operators are extended to the case of fuzzy-number-
valued functions, existence of best approximation and convergence of Lagrange
interpolation polynomials are studied in the fuzzy case of crisp input fuzzy
output case.

The idea of exploiting approximation capabilities of fuzzy systems in prac-
tice is present in the literature from the very beginning of fuzzy control. An
important approach to fuzzy control is the interpolative control. Controllers of
this type are the Kóczy-Hirota interpolators based on Shepard-type operators
(see [8], [15]). Other types of interpolators can be found in e.g. [12], [6]. For
these controllers/interpolators, the inputs and the outputs are both fuzzy sets
(usually not necessarily fuzzy numbers). Approximation of fuzzy input fuzzy
output functions by max t-norm compositions is another approach and it is used
in fuzzy control (see [11]). Some results on this type of approximation can be
found in the recent papers [13] and [3].



In many practical problems the inputs and/or the outputs are fuzzy numbers.
Then naturally raises the problem of interpolating functions which have their
range and/or domain in the set of fuzzy numbers. We study this problem in
Section 2. An approach based on max-product compositions is presented in
Section 3 and then some conclusions and further research topics are pointed
out.

2 The Shepard approximation operator for fuzzy
input fuzzy output functions

Firstly, let us recall some known concepts and results. Let RF be the space
of fuzzy numbers (i.e. normal, convex, upper semicontinuous, compactly sup-
ported fuzzy sets of the real line). For 0 < r ≤ 1 and u ∈RF we define
[u]r = {x ∈ R; u(x) ≥ r} and [u]0 = {x ∈ R; u(x) > 0}. Then it is well-
known that for each r ∈ [0, 1], [u]r is a bounded closed interval, denoted by
[u]r = [ur

−, ur
+], and for u, v ∈ RF , λ ∈ R, the sum u⊕ v and the product λ · u

are defined by [u⊕ v]r = [u]r + [v]r, [λ ·u]r = λ[u]r, ∀r ∈ [0, 1], where [u]r + [v]r

means the usual addition of two intervals (as subsets of R) and λ[u]r means the
usual product between a scalar and a subset of R.

Let D : RF×RF → R+ defined by D(u, v) = supr∈[0,1] max{|ur
−−vr

−|, |ur
+−

vr
+|} the Hausdorff distance between fuzzy numbers. The following properties

are well-known :
D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,
D(k · u, k · v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,
D(u⊕ v, w ⊕ e) ≤ D(u,w) + D(v, e), ∀u, v, w, e ∈ RF
and (RF , D) is a complete metric space.
We denote by B(u, r) = {v ∈ K : D(u, v) < r} ⊂ RF the open ball having

center u ∈ RF and radius r.
Let us recall the definition and some properties of the modulus of continuity

(see e.g. [4]).

Definition 1 (i) Let (X, d1), (Y, d2) be metric spaces and let f : X → Y be a
continuous function. Then the function ω (f, ·) : R+ → R+ defined by

ω (f, δ) = sup {d2 (f (x) , f (y)) ; x, y ∈ X, d1(x, y) ≤ δ}
is called the modulus of continuity of f.

Theorem 2 The following properties hold true
i) d2 (f (x) , f (y)) ≤ ω (f, d1(x, y)) for any x, y ∈ X;
ii) ω (f, δ) is nondecreasing in δ;
iii) ω (f, 0) = 0;
iv) ω (f, δ1 + δ2) ≤ ω (f, δ1) + ω (f, δ2) for any δ1, δ2,∈ R+;
v) ω (f, nδ) ≤ nω (f, δ) for any δ ∈ R+ and n ∈ N;
vi) ω (f, λδ) ≤ (λ + 1) · ω (f, δ) for any δ, λ ∈ R+;
vii) If f is continuous then limδ→0 ω (f, δ) = 0.



In our case we will consider that both the input space and the output space
is RF . So we propose the problem of approximation (interpolation) of a function
f : RF → RF given a rule base, i.e. sampled data (ui, f(ui)) ∈ R2

F , i = 1, ..., n.
Usually the rule base appears in practice as a list of fuzzy IF-THEN rules of the
form

IF ui THEN f(ui),

which govern some process and they are used for the construction of a fuzzy con-
troller. The fuzzy numbers ui will be called inputs and the fuzzy numbers f(ui)
will be called the outputs. The form of the Shepard approximation operator in
this case is suggested by the form of crisp Shepard approximation operator and
Kóczy-Hirota interpolators (see [14], [8], [15]).

For λ ∈ R we consider Shλ
n : RF → RF defined for any u ∈ RF as

Shλ
n(u) =





∑n
i=1

1
D(u,ui)

λ∑n
i=1

1
D(u,ui)

λ
· f(ui), if u /∈ {u1, ..., un},

f(ui) if u ∈ {u1, ..., un}.
.

Firstly we study some properties of the above defined approximation operator.

Proposition 3 The following properties hold true:
(i) Shλ

n(u) is a fuzzy number for any u ∈ RF ;
(ii) Shλ

n is compatible with the rule base;
(iii) Shλ

n is continuous;

(iv) [Shλ
n]r =

∑n
i=1

1
D(u,ui)

λ∑n
i=1

1
D(u,ui)

λ
· [f(ui)]r for any r ∈ [0, 1] (here addition

and multiplication denote standard interval operations);
(v) Shλ

n preserves the shape of fuzzy numbers in the sense that if all the
outputs are triangular (or even L − R) fuzzy numbers, then Shλ

n(u) is also a
triangular (L−R) fuzzy number.

Proof. The proofs of (i), (ii) and (iv) are obvious by the definition of the
operator Shλ

n.
For (iii) we observe that for u /∈ {u1, ..., un} continuity of Shλ

n(u) is obvious
since the Hausdorff distance is a continuous function. Also it is easy to check
that limu→ui Shλ

n(u) = f(ui) and so it is continuous.
For (iv) we observe that a linear combination of triangular (L − R) fuzzy

numbers is again a triangular (L−R) fuzzy number.
In order to obtain an estimate for the approximation error, the target func-

tion f will be considered on a compact subset of RF . Then we get the following
result.

Theorem 4 Let f : K → RF , where K ⊂ RF is a compact. Let (ui, f(ui)) ∈
R2
F , i = 1, ..., N be a rule base and let m ∈ N be the greatest number such

that the balls B
(
ui,

1
m

)
cover K. Then for any λ > 2 there exists a rule base

(ui, f(ui)) ∈ R2
F , i = 1, ..., n (n ≤ N) selected from the original rule base, such

that

D(f(u), Shλ
n(u)) ≤ (1 + n) · ω

(
f,

1
m

)
.



Proof. Let u ∈ K be a fixed element. Let j0 ∈ {1, ..., N} be such that
u ∈ B

(
uj0 ,

1
m

)
, i.e. D(u, uj0) < 1

m . Let now u1, ..., un be the sequence of points
wich is obtained from the original sequence u1, ...uN by eliminating the points
ul, l ∈ {1, ..., N}, l 6= j0 such that D(u, ul) < 1

m . Then for i 6= j0, i ∈ {1, ..., n}
for the new sequence we have D(u, ui) ≥ 1

m . Now let Shλ
n : K → RF ,

Shλ
n(u) =

n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

· f(ui).

In what follows we estimate the distance D(Shλ
n(u), f(u)). By using the

properties of the Hausdorff distance we have

D(Shλ
n(u), f(u)) = D

(
n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

· f(ui),
n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

· f(u)

)

≤
n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

·D(f(ui), f(u)).

By the properties of the modulus of continuity we get

D(Shλ
n(u), f(u)) ≤

n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

· ω(f, D(u, ui))

=
n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

· ω
(

f,
mD(u, ui)

m

)

≤
n∑

i=1

1
D(u,ui)λ∑n

i=1
1

D(u,ui)λ

(1 + mD(u, ui)) · ω
(

f,
1
m

)

=

(
1 + m

∑n
i=1

1
D(u,ui)λ−1∑n

i=1
1

D(u,ui)λ

)
· ω

(
f,

1
m

)
.

Since D(u, uj0) < 1
m we get

D(Shλ
n(u), f(u)) ≤


1 + m

∑n
i=1

D(u,uj0 )λ

D(u,ui)λ−1

∑n
i=1

D(u,uj0 )λ

D(u,ui)λ


 · ω

(
f,

1
m

)

≤

1 + m

D(u, uj0) +
∑

i6=j0

D(u,uj0 )λ

D(u,ui)λ−1

1 +
∑

i 6=j0

D(u,uj0 )λ

D(u,ui)λ


 · ω

(
f,

1
m

)

≤

1 + m

1
m + 1

mλ

∑
i6=j0

1
D(u,ui)λ−1

1 +
∑

i 6=j0

D(u,uj0 )λ

D(u,ui)λ


 · ω

(
f,

1
m

)
.



Finally since for i 6= j0 we have D(u, ui) ≥ 1
m and finally we get

D(Shλ
n(u), f(u)) ≤


1 + m

1
m + 1

mλ (n− 1)mλ−1

1 +
∑

i 6=j0

D(u,uj0 )λ

D(u,ui)λ


 · ω

(
f,

1
m

)

≤ (1 + n) · ω
(

f,
1
m

)
.

The existence of a rule base such that the conditions of the previous theorem
are fulfilled is shown as follows. Since K is a compact subset of a complete metric
space, it is also totally bounded and it follows that for any m ∈ N there exist
points u1, ...uk ∈ K such that

⋃k
i=1 B

(
ui,

1
m

)
= K, where B(u, r) = {v ∈ K :

D(u, v) < r} denotes the open ball having center u and radius r in K.
If the inputs are crisp we obtain the approximation operators given in [2] for

fuzzy-number-valued functions.
The error estimate in the previous theorem is not very practical since the

number n is generally not known. Also, the estimate is not sharp, however in
some situations it can be useful.

The condition that the target function is defined on a compact is not obvi-
ously satisfied, even by closed balls. Indeed, since fuzzy number’s space endowed
with the Hausdorff distance is not locally compact, even closed balls of it are not
necessarily compact. However, for example, a closed ball in the set of triangular
numbers is a compact set.

3 Shepard type max-product approximation op-
erators

Another way of extending the Shepard approximation operators can be found in
the recent paper [3]. Here max-product Shepard-type and exponential operators
are defined and studied. In this case the target function is f : K → F(Y ),
where K ⊂ RF is a compact set, (Y, d) is a compact metric space and F(Y )
denotes the collection of all fuzzy subsets of Y. In this case F(Y ) is endowed
with the uniform distance, i.e. for A,B ∈ F(Y ) the distance between A and B
is considered ‖A−B‖ = supy∈Y |A(y)−B(y)|. Let also (ui, f(ui)) ∈ K×F(Y ),
i = 1, ..., n be a rule base. We define

Sλ
n(u) =

n∨

i=0

1
D(u,ui)λ

n∨

i=0

1
D(u,ui)λ

· f(ui)

and

Eλ
n(A) =

n∨

i=0

e−λD(u,ui)

n∨

i=0

e−λD(u,ui)

· f(ui)



the Shepard-type and exponential max-product approximation operators (here
the multiplication of a fuzzy set B ∈ F(Y ) by a crisp real in α ∈ [0, 1] interval
is defined pointwise, i.e. (α ·B) ∈ F(Y ) is defined by (α ·B)(y) = α ·B(y)).

For a given y ∈ Y we have

Sλ
n(u)(y) =

n∨

i=0

1
D(u,ui)λ · f(ui)(y)

n∨

i=0

1
D(u,ui)λ

and

Eλ
n(u)(y) =

n∨

i=0

e−λD(u,ui) · f(ui)(y)
n∨

i=0

e−λD(u,ui)

.

In [3] the following error estimate is obtained

∥∥Sλ
n(u)− f(u)

∥∥ ≤
(

m

n∧

i=0

D(u, ui) + 1

)
ω

(
f,

1
m

)
,

for any m ∈ N, which is more practical than the estimate in Theorem 4, but it
is in the uniform distance which is not so distinctive as the Hausdorff distance.
The max-product approximation operators are continuous and they are more
general then the operators presented in Section 2, since the outputs in the first
case need to be fuzzy numbers while in this second case the outputs can be
fuzzy sets on an arbitrary compact metric space. Let us remark that in the
case of both approximation operators presented in this paper the inputs are not
restricted by additional conditions, while in the case of KH-interpolators the
inputs must fulfill some additional condition.

4 Conclusions and further research

Two possible ways of extending Shepard operator for approximation of fuzzy
input fuzzy output functions are presented and studied. These have both in-
terpolation and approximation properties and are inspired by crisp Shepard
operators and Kóczy-Hirota interpolators. In the first approach both the inputs
and the outputs are fuzzy numbers while in the second case only the inputs are
fuzzy numbers. Some approximation properties are studied for both cases.

For further research we propose the implementation of the above defined
interpolators, numerical experiments on their effectiveness and also design of
fuzzy controllers based on these operators.
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