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Abstract: For solving linear system of equations is known several algorithms. Iteration 
algorithms are recommended for the large linear systems with sparse matrix. But in the 
case of general n x m matrices the classic iterative algorithms are not applicable with a few 
exceptions. For example in some cases the Lanczos type algorithms are adequate. The 
algorithm presented here based on the minimization of residuum of solution and it has 
some genetic character. Therefore this algorithm seems to be applicable for construction of 
parallel algorithm. Here we describe a sequential version of proposed algorithm and give 
its theoretical analysis. Moreover we show some numerical test results of the sequential 
algorithm. 
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1 Introduction 

Let A be a general nxm matrix. The basic problem is to solve the following linear 
system of equations:  

Au b= , (1) 

where mu R∈ and nb R∈ are the solution and the given right hand side vector. 
The existence and uniqueness of the solution of (1) can be determined from matrix 
A and the vector b . Theoretically the Gaussian or Gauss-Jordan elimination 

algorithm is appropriate tool to solve the system (1) and decide the question of 
solvability. But practically for large systems when we use floating point 
arithmetic, these direct algorithms are inapplicable. For these cases the iteration 
algorithms are suitable. Effective iteration algorithms are known for symmetric 
positive definite linear systems called Hermitian. Most of known iterative 
algorithms in general form can be written in the form of: 

( ) ( 1) , 1, 2,...n nu Gu k n−= + = , (2) 



where G  and k  are such matrix and vector that (2) for its stationary solution 
must be equivalent with (1), see ([1]). The most effective algorithms for such 
system are the preconditioned conjugate gradient (CG) ones see ([2]). These 
iterative algorithms can be applied for general nonsymmetric linear systems too if 
we solve the following normal system 

T TA Ax A b v= =  (3) 

instead of the original one. A disadvantage of this approach is that the resulting 
linear system (3) for matrices with full rank will be Hermitian ones but its 
condition number will be the square of the original condition number, therefore 
the convergence will be very slow. For general non-Hermitian linear systems 
instead of generalization of some variant of the CG algorithms one of the most 
successful scheme is the generalized minimal residual algorithm (GMRES) see 
([5]) and the biconjugate gradient algorithm (BCG) see ([6]). A more effective 
approach was suggested by Freund and Nachtigal ([7]) for the case of general 
nonsingular non-Hermitian systems which calls the quasi-minimal residual 
algorithm (QMR). 

In the following we describe an iterative minimal residual algorithm which is 
slightly different from the above ones, but this difference can be very important 
for further development of these algorithms for parallel implementation. 

2 An Iterative Minimal Residual Algorithm 

It is known, that the most of the iterative algorithms for the solution of linear 
systems based on some minimization algorithm see ([2]). The normal system (3) 
can be obtained by the least square minimization in the following way. We have to 
solve the following problem: 

2

2
min min( , ) min( , )

n n nx R x R x R
Ax b Ax b Ax b r r

∈ ∈ ∈
− = − − = , (4) 

where r Ax b= −  is the residual belonging to the vector x . 

The normal system (3) can be derived easily from (4) by a simple calculation. 
More precisely we obtain, that the necessary condition of the existence and 
uniqueness of the solution of (4) is the fulfilment of (3). A sufficient condition for 
the uniqueness is the Hermitian property of the normal matrix TA A . For general 
non-Hermitian matrices this condition will not fulfil in general. 

To solve the problem (4) we chose the following way. One possible algorithm can 
be obtained from the observation formulated by the following theorem. 



Theorem 1 Let m nA R R∈ → and nb R∈ be an arbitrary matrix and vector. 
Moreover let mx Rα ∈  and mx Rβ ∈  be arbitrary, but such different vectors for 
which ( ) 0A x xα β− ≠ . Let us introduce the following notations: 

, ,s sr Ax b s α β= − = , and 

(1 )r cr c rαβ α β= + − ,      (1 )x cx c xαβ α β= + − , (5) 

where c R∈ . It is easy to see, that Ax b rαβ αβ− = . 

Then the solution of the constrained minimization problem of (4) along the line 
defined by the vectors xα  and xβ  is the vector xαβ with c , where 
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( , )r r rc

r r

β α β

α β

−
=

−
 (6) 

Moreover 

{ }
,

min ,r r rαβ α β

α β
< , 

where we use the Euclidean norm. 

Proof of Theorem 1 The constrained minimization problem of (4) with (5) is a 
one-dimensional problem. So we have to solve the following one-dimensional 
problem: 

2
min ( ) min( (1 ) , (1 ) ) min ( ) .

c c c
f c cr c r cr c r r cα β α β αβ= + − + − =  (7) 

From here the result (6) as the necessary condition can be obtained after a simple 
calculation. The sufficient condition from (7) is: 

2 2

2

( ) 2 0d f c r r
dc

α β= − > , (8) 

which condition is fulfilled if rα  and r β are different vectors. 

The meaning of the theorem 1 is the following: If we have some approximate 
solution xα  for the problem (1), then by arbitrary xβ  vector satisfying the 
conditions of theorem (1) we can get a better approximate solution in the form of 
xαβ  vector, where the appropriate constant c  is defined by (4). 

Remark: As against the classical iterative algorithms, such as gradient and the 
conjugate gradient ones, here the directions of minimization are chosen by chance. 
The algorithm can be continued in every step by choosing a new independently 



chosen arbitrary xβ  vector. This is the main new property of the proposed 
algorithm, because this property allows, that in parallel arbitrary number of 
approximation vector can be generated independently, and all these vectors can be 
used to improve the earlier best approximation of the solution. 

The realization of the theoretical results as an algorithm can be made in several 
ways. Here we describe a simple (maybe the most simple) version of a sequential 
algorithm. 

2.1 The Algorithm 1 

Using the results of the Theorem 1 we can formulate an algorithm, which generate 
an approximate solution sequence , 1, 2,3,...kx k =  and in parallel its residual 

vectors , 1, 2,3,...kr k = . 

1 Let 1x  be an arbitrary vector and ε  the error tolerance. 

2 Calculate 1 1r Ax b= − . 

3 Generate an arbitrary vector , 2x  such that 1 2 0r r− ≠ . 
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5 Calculate the new 12 12 1 12 2: (1 )x c x c x= + −  and 
12 12 1 12 2: (1 )r c r c r= + −  vectors. 

6 1 12:x x=  és 1 12:r r=  

7 If 1r ε<  then go to 8. else go to 3. 

8 The approximate solution is 1x , end of algorithm. 

The algorithm 1 is the simplest one which can be formulated by the result of 
Theorem 1. Therefore the convergence of this algorithm is not better than the 
convergence of the classical ones. The novelty of this algorithm is not in this 
property. 



 
Figure 1 

The convergence of the Algorithm 1. on the 16×17 dimension problems. 

2.2 Test Results for the Convergence 

Several arbitrary 16×17 dimension 16 17A R R∈ → matrix and 17b R∈  was 
generated as test problems. The Algorithm 1 was realized using the Maple8 Linear 
Algebra library. The results of the algorithm are shown on the Fig. 1. 

On the Fig. 1 one can see that the convergence of the algorithm is strictly monoton 
but very slow. The attained residual norms are: 

0.02531, 0.004331, 0.021461, 0.02777, 0.01322 .r =  

These results are such ones what we could expect because the test problems are 
such linear systems where the matrix is not a square matrix, and the test vectors 
were chosen by hasard. By analysing of the algorithm it is possible to elaborate 
better strategy for the generation of test vectors, but this can be a topic of a new 
work. On the Fig. 2 we show the speed of convergence depending on the condition 
number of the 10×10 test matrices. One can see, that the convergence is very slow 
for the test problems with large condition numbers, which is not a surprising result 
too. 



 
Figure 2 

The convergence results of the Algorithm 1. for 10×10 dimension test problems with 
different condition numbers. 

On the Table 1 we show the results for the different test problems. From this table 
we can conclude that the Algorithm 1 because of its hazard character can produce 
quite different speed of convergence, but this speed depends on the condition 
number of the test matrices. 

Table 1 

Numeration of the 
curve on Fig. 1. 

1 2 3 4 5 6 7 

Condition number 
of the matrix. 

623 75 573 123 1544 90 227 

Residual norm 
attained. 

1.4 0.000089 0.14 0.031 3.5 0.032 0.00
25 

3 Summary 

We have formulated a new genetic like algorithm for the solution of general linear 
systems of equations, which based on the residual minimization technique. The 
test results confirm the theoretical results. The convergence speed of the 
sequential algorithm proposed is very slow, but the idea suggested is appropriate 
for constructing more effective parallel algorithm too combining this idea with the 
results published in ([8-11]). This problem can be the subject of some forthcoming 
paper. 



References 

[1] Louis A. Hageman, Davis M. Joung,: Applied Iterative Methods, Computer 
Science and Applied Mathematics, Academic Press, (1981) 

[2] P. G. Ciarlet, Introduction à l’analyse numérique matricielle aet à 
l’optimisation, MASSON, Paris, 1982 

[3] G. Golub, A. Greenbaum, M. Luskin, eds., Recent Advances is Iterative 
Methods, The IMA Volumes in Math. and its Applications Vol. 60, Springer 
Verlag, 1994 

[4] J. Gilbert, D. Kershaw, Large-Scale Matrix Problems and the Numerical 
Solution of Partial Differential Equations, Advances in Numerical Analysis, 
Vol. III, Clarendon Press, Oxford, 1994 

[5] J. Saad and M. H. Schultz, GMRES: A generalized minimal residual 
algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. 
Comput., 7 (1986) pp. 856-869 

[6] C. Lanczos, Solution of systems of linear equations by minimized iterations, 
J Res. Nat. Bur. Standards, 49 (1952) pp. 33-53 

[7] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method 
for nonhermitian linear systems, Numer. Math., 60 (1991) pp. 315-339 

[8] G. Molnárka and B. Török, Residual Elimination Algorithm for Solving 
Linear Equations and Application to Sparse Systems. Zeitschrift für 
Angewandte Mathematik und Mechanik (ZAMM), Issue 1, Numerical 
Analysis, Scientific Computing, Computer Science. pp. 485-486, 1996 

[9] J. K Tar, I. J. Rudas, J. F. Bitó, L. Madarász: An Emerging Branch of 
Computational Cybernetics Dedicated to the Solution of Reasonably Limited 
Problem Classes, AT & P Journal Plus2 2001, pp. 19-25 

[10] J. K. Tar, I. J. Rudas, L. Madarász, J. F. Bitó: "Simultaneous Optimization of 
the External Loop Parameters in an Adaptive Control Based on the Co-
operation of Uniform Procedures", Journal of Advanced Computational 
Intelligence, Vol. 4, No. 4, 2000, pp. 279-285 

[11] A. Lotfi, An H-matrix Type Preconditioner for Frictional Contact Problems, 
PAMM Proc. Appl. Math. Mech. 4, 438-439 (2004) 

This work was supported by OTKA No T043258 and  

CBC PHARE 2002/000-317-02-20 


