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Abstract: One of the possible solutions of how to achieve higher performance of computer 
systems is represented by the concept of architecture of high-performance parallel 
computer systems. Traditional techniques of parallelism cannot fully utilize the 
characteristics of parallel architectures because of typical problems of modular and 
parallel decompositions of programs. In concept, research presented in this article 
represents the unification into paradigms of control-flow and data-flow computing. The 
research assumes the parallelization of the sequential threads, where forking and joining 
are used. 
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1 Introduction 
One of the possible solutions of how to achieve higher performance of computer 
systems is represented by the concept of architecture of high-performance parallel 
computer systems. 

Monoprocessor systems based on the principle of a Von Neumann-type computer 
are trying to meet these demands by increasing the speed of individual parts of the 
computer. Possibilities of increasing the speed in this way, however, are 
determined by technological possibilities [4]. In conventional control-flow 
computers the processing of instructions is determined by the existence of control 
and synchronization signals. Instructions in these architectures are executed 
serially, or quasi-concurrently. 

In most cases, programs contain those instructions, whose order of execution does 
not influence the correct interpretation of the whole program. The option of taking 
advantage of these independent instructions brought about a new concept of 
processing an instruction flow – processing instructions on the basis of data flow. 
The basis of this new semantic is the data-flow principle, according to which it is 



possible to execute every instruction asynchronously, as soon as all of it operands 
are available. Computers controlled by data flow (Data Flow Computers) allow 
taking advantage of natural parallelism of the program, and so to shorten the time 
needed for the realization of a calculation. The advantage of the Data Flow (DF) 
architecture rests in the application of the principle of data control of the 
computing process in multiple-processor systems. It eliminates the problem of 
dead points, which can originate in Control Flow (CP) architectures. 

Traditional techniques of parallelism cannot fully utilize the characteristics of 
parallel architectures because of typical problems of modular and parallel 
decompositions of programs. 

This contribution deals with the DF KPI architecture model with the multipipeline 
execution unit, which is a research subject at the Department of Computers and 
Informatics at the Technical University of Košice [2]. 

2 Data Flow Architectures 
Conventional Von Neumann computers are based on the CF computing model, in 
which the control of the computing process is realized through interpretation of 
the serial data flow of the program [1,4]. In frame of different directions of 
development of new generation computers with extremely high performance, 
presently, attention is paid to a special class of parallel computers based on the DF 
computing model, in which the control of the computing process is driven by the 
flow of operands (data) prepared to execute the program instructions [3,5]. 

A characteristic feature of DF computers is that instructions of a DF program are 
passively waiting for the arrival of a specific combination of its arguments, the 
access f which is being organized as a data control stream, in the sense of being 
data-driven. The instruction’s interval of waiting for the arrival of operands 
represents its selection faze, in which allocation of computing sources takes place. 
Basis for the DF computing model is task mapping (Fig. 2) on processor elements 
(CEs – Computing Elements). In general, the task needs to be decomposed into 
smaller communicating processes, which are represented by the Data Flow 
program. 
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Figure 2 
Mapping of tasks on CEs 

A Data Flow program, utilizing the DF computing model, is represented by its 
machine representation, called dataflow graph (DFG). The DF computing model 
(DF program) makes it possible to detect parallelism at the lowest level, i.e. at the 
level of machine instructions (ILP – Instruction-Level Parallel). 

Implementation of a DF computer architecture depends on the mode of instruction 
execution of the DF program, which runs as a process of receiving, processing and 
sending of activation tokens (Data Token - DT), representing data and flags on 
DFG edges. Depending on the way of processing activation tokens in DFG, or 
depending on the extent of architectonic support of its execution, two types of 
direct DF architectures are distinguished: 

• Static models (Fig. 3). 

• Dynamic models (Fig. 4). 

In the static dataflow model (Fig. 3) the operator in the form of a node is 
executable when tokens (values) are presented in all input edges and a token is not 
presented in the output [3]. This model can take advantage of structural 
parallelism and pipelined parallelism. The static dataflow model found use in 
applications with frequent numeric computing structures. 
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Figure 3 

The basic organization of the static dataflow model 



In the dynamic dataflow model (Fig. 4) the operator connected to the node is 
executable when all input edges contain tokens, whose marks are identical [3]. In 
this model, every edge can contain more than one signed token. When the node is 
executed, tokens belonging together are removed from input edges and on the 
output a token with a responding mark is generated. The dynamic dataflow model 
so uses loop parallelism, as well as recursive parallelism, which dynamically 
appear during the execution of the program. This kind of architecture must support 
the process of connecting operands. 
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Figure 4 
The basic organization of the dynamic dataflow model 

In many dynamic dataflow architectures an associative memory is needed to 
achieve a connection of suitable data tokens (DT) (operands). At the moment, DF 
architectures are favored, in which associative concatenation of tokens is 
eliminated by explicit and direct memory addressing – using direct concatenation 
of operands (Monsoon, EM-4, Epsilon-2). 

4 Multipipeline Processing 
Multipipeline processing of DF Graph (DFG) is introduced on Fig. 5, where PSk is 
the k-th computational stream of the DFG (k=1, 2, ..., n); AZl, Azp are 
correspondent input operands (left, right) at the DFG operator Om in k-th 
computational stream PSk. 



 

 

Figure 5 
DFG of n-instructional streams 

Any computational stream is executed by the pipeline organization of the 
coordinating processor CP, meaning, by the main components of the proposed 
architecture. CP consists of a linear structure of the pipeline stages SG, which are 
controlled by independent segment microprograms. On the structure level, the 
segments represent the pipeline stages LOAD, FETCH, OPERATE, MATCHING 
and COPY. Detailed structure organization of the DFKPI model is discussed in 
[2]. 

Synchronization, control and state signals are distributed by the Segment Control 
Part (SGC) of the pipeline stages. Concurrent execution of defined phases of the 
pipeline processing in the instruction streams of the DFG give possibilities for 
parallel implementation of the computing process at the instruction level. 

In a direct matching, scheme, storage (called an activation frame) is dynamically 
allocated for all the tokens generated by a code-block. The actual usage of 
locations within a code-block is determined at compile-time; however, the actual 
allocation of activation frames is determined during run-time. In a direct matching 
scheme, any computation is completely described by a pointer to an instruction 
(IP) and a pointer to an activation frame (FP). The pair of pointers, <FP, IF>, is 
called a continuation and corresponds to the tag part of a token. A typical 
instruction pointed to by an IP specifies an opcode, an offset in the activation 
frame where the match will take place, and one or more displacements that define 
the destination instructions that will receive the result token(s). Each destination is 
also accompanied by an input port (left/right) indicator that specifies the 
appropriate input arc for a destination actor. 



5 Multithreading 
The notion of a thread in the context of multithreaded processors differs from the 
notion of software threads in multithreaded operating systems. In the case of a 
multithreaded processors a thread is always viewed as a hardware-supported 
thread which can be - depending on the specific form of multithreaded processors 
– a full program (single-threaded UNIX process), a light-weight process (e.g. a 
POSIX thread) or a compiler – or hardware-generated thread (subordinate 
microthread, microthread, nanothread, etc.). 

In this point let’s assume the DF contains many sequential threads of control. Each 
thread can be thought of as an independent instruction stream, which is executed 
in the Von Neumann control-flow way. Each thread has an independent set of 
registers. Each PE has a fixed limit as to the number of threads it can actually 
process simultaneously [2]. The state of a thread is contained in an execution 
interpreter EI (Fig. 6). The EI has five registers, which simply hold data associated 
with a particular thread: the execution register E, the value register V (the result of 
ALU operation is stored there), and three temporary registers R1, R2, R3. 

The execution register E defines context, in which the EI thread is executed. IT 
contains a pair of pointers – the instruction pointer IP into instruction memory 
(points to the next instruction to be executed), the frame pointer FP into frame 
memory (base address of activation frame for procedure calling). 
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Figure 6 
Execution Interpreter 

Using frame addressing, one program block can have more active calls. The pair 
IP and FP has to have the same vertex number, and moreover, this node is PE, 
which will execute the thread. Register E also has a field called PORT P (used 
only during the Join operation). 

Concerning the resident EI threads, every PE has a part of the global address space 
of the memory under control. We distinguish two types of address spaces: 



instruction memory and data address space. Both have two parts: the node number 
and the offset into a part of address space under control of this node. 

The PE fields of thread’s E register indicates where it executes, and so references 
to the activation frame can be thought of as fetch instructions in the sense of local 
references [2,6]. 

Parallel driving operators, similar to sequential driving signal-operators in the Von 
Neumann model, have the task of controlling the instruction stream processing. 
While in the sequential driving operators’s case, the operators are able to intervene 
only into the sequence of instruction execution, parallel driving operators are able 
to form and cancel new computing threads and so influence the number of active 
threads. 

The basic instructions for manipulating the E and V registers – to create and 
synchronize threads, and to make global memory references presented from a 
multithread perspective are described in the following. 

Assumed a program fragment: 

R := (A - B) x (B + 1)  (1) 

Where R, A, B are local variables held in the activation frame. The example 
shows the FP-relative addressing mode for accessing these variables, which can 
only make local references, i.e. references to locations on the same node as is 
executing the construction. All of these instructions increment the IP field of E to 
move to the next instruction. 

Command (1) can be compilated into a sequential thread, where every instruction 
is assigned into a sequential instruction memory address. 

mov V, [FP+A] ;V := A 
sub V,B ;V := A – B  
mov [FP+R1],V ;R1 := V 
mov V,[FP+B] ;V := B 
add V,[LITERAL_1] ;V := B + 1 
mov [FP+R2],V ;R2 := V 
mul [FP+R1] ;V := (A - B)x(B+1) 
mov [FP+R],V ;R := V 

Fork and Join. To establish a new thread into the computing process, serves the 
fork mechanism. Instruction fork is a combination of the jump instruction and 
establishing an instruction into a stream of processing instructions. Executing the 
„fork label“ instruction has two effects. First, the present thread calls the following 
instruction (field IP is incremented) and second, a new thread is established into 
the system, whose registers E and V are identical to the present EI, while it is 
expected, that field IP in E is the name. 



The Fork instruction may set the port in addition to computing a new IP. When a 
thread executes a non-joining instruction, its E register specifies the left port. 

Two threads executed on the same PE can synchronize each other using the Join 
mechanism. For example join-subtract could be described as:  

label  [FP+0]:  sub   vL, vR (2) 

Join mechanism in expression (2) is indicated by the presence of the memory 
operand in front of the colon, which divides the expression. 

The idea behind a Join is that two threads will fetch a join-modified instruction at 
different times, but only the second one (in time) actually performs the indicated 
operation and continues. The first thread to execute merely saves the context of its 
V register, and then dies without finishing the join-modified instruction or 
proceeding to the next. When the second thread executes the join-modified 
instruction, it retrieves the saved value, so that both V registers are available as its 
operands. Two threads participating in a Join have different PORT bits in their E 
registers, thus left and right operands can be distinguished regardless of the order 
in which the two threads happen to execute. The example using FORK and JOIN 
to cause the multiplications in expression (1) to execute it in separate threads is 
shown as follows: 
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Figure 7 

Parallelized sequential threads 

 

 



Conclusion 

The research of DF architectures was motivated by the need to achieve higher 
performance. Research doesn’t eliminate the Von Neumann architecture while it is 
able to effectively process dataflow tokens and effectively execute the sequence 
code. 

In concept, research presented in this article represents the unification into 
paradigms of control-flow and data-flow computing. New technologies and 
algorithms were presented at a theoretical level. 

From a different point of view, multithread processing is a confirmation of the 
fact, that parallelism at an instruction level is well taken advantage of in the way 
of sequential thread executions in streams. 

This addition could lead to further research of DFKPI dataflow architecture, which 
provides the utilizing of natural parallelism. 

References 

[1] Jelšina, M.: Architectures of Computer Systems (in Slovak). Elfa s.r.o., 
Košice, 2002, ISBN 80-89066-40-2 

[2] Jelšina, M. a kol.: Design of Computer System Data Flow KPI (in Slovak). 
Elfa s.r.o., Košice, 2004, ISBN 80-89066-86-0 

[3] Sima D., Fountain T, Kacsuk P.: Advanced Computer Architectures – A 
design Space approach (in Hungarian). Szak Kiadó Kft., Bicske, 1998. 
ISBN 963 9131 09 1 

[4] Tanenbaum, A. S.: Structured Computer Organization (in Hungarian). 
Panem Könyvkiadó Kft., Budapest, 2001. ISBN 963 545 282 9 

[5] Vokorokos, L.: Data Flow Computer Principles (in Slovak). Monograph. 
Copycenter, spol. s.r.o., Košice, 2002. ISBN 80-7099-824-5 

[6] Papadopoulos, G.M., Traub, K.R.: Multithreading: A Revisionist View of 
Data Flow Architectures. In Proc. of the 18th Int. Symp. on Comp. 
Architecture, 1991, Toronto, pp. 344-350 

–––––––––––––––––––––––––––––––––––––– 
Supported by VEGA project No. 1/1064/04 
 


