
Paralelization of the Sequantial Threads in DF
Computers

Liberios Vokorokos, Norbert Ádám, Anton Baláž
Department of Computers and Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
E-mail: Liberios.Vokorokos@tuke.sk, Norbert.Adam@tuke.sk,
Anton.Balaz@tuke.sk

Abstract: One of the possible solutions of how to achieve higher performance of computer
systems is represented by the concept of architecture of high-performance parallel
computer systems. Traditional techniques of parallelism cannot fully utilize the
characteristics of parallel architectures because of typical problems of modular and
parallel decompositions of programs. In concept, research presented in this article
represents the unification into paradigms of control-flow and data-flow computing. The
research assumes the parallelization of the sequential threads, where forking and joining
are used.

Keywords: dataflow, architecture, multipipeline processing, sequential thread, fork, join

1 Introduction
One of the possible solutions of how to achieve higher performance of computer
systems is represented by the concept of architecture of high-performance parallel
computer systems.

Monoprocessor systems based on the principle of a Von Neumann-type computer
are trying to meet these demands by increasing the speed of individual parts of the
computer. Possibilities of increasing the speed in this way, however, are
determined by technological possibilities [4]. In conventional control-flow
computers the processing of instructions is determined by the existence of control
and synchronization signals. Instructions in these architectures are executed
serially, or quasi-concurrently.

In most cases, programs contain those instructions, whose order of execution does
not influence the correct interpretation of the whole program. The option of taking
advantage of these independent instructions brought about a new concept of
processing an instruction flow – processing instructions on the basis of data flow.
The basis of this new semantic is the data-flow principle, according to which it is

possible to execute every instruction asynchronously, as soon as all of it operands
are available. Computers controlled by data flow (Data Flow Computers) allow
taking advantage of natural parallelism of the program, and so to shorten the time
needed for the realization of a calculation. The advantage of the Data Flow (DF)
architecture rests in the application of the principle of data control of the
computing process in multiple-processor systems. It eliminates the problem of
dead points, which can originate in Control Flow (CP) architectures.

Traditional techniques of parallelism cannot fully utilize the characteristics of
parallel architectures because of typical problems of modular and parallel
decompositions of programs.

This contribution deals with the DF KPI architecture model with the multipipeline
execution unit, which is a research subject at the Department of Computers and
Informatics at the Technical University of Košice [2].

2 Data Flow Architectures
Conventional Von Neumann computers are based on the CF computing model, in
which the control of the computing process is realized through interpretation of
the serial data flow of the program [1,4]. In frame of different directions of
development of new generation computers with extremely high performance,
presently, attention is paid to a special class of parallel computers based on the DF
computing model, in which the control of the computing process is driven by the
flow of operands (data) prepared to execute the program instructions [3,5].

A characteristic feature of DF computers is that instructions of a DF program are
passively waiting for the arrival of a specific combination of its arguments, the
access f which is being organized as a data control stream, in the sense of being
data-driven. The instruction’s interval of waiting for the arrival of operands
represents its selection faze, in which allocation of computing sources takes place.
Basis for the DF computing model is task mapping (Fig. 2) on processor elements
(CEs – Computing Elements). In general, the task needs to be decomposed into
smaller communicating processes, which are represented by the Data Flow
program.

...........

...........

...........

x0 xn-1-

y0 yn-1

Application

CE0 CEn-2CE1 CEn-1

Figure 2
Mapping of tasks on CEs

A Data Flow program, utilizing the DF computing model, is represented by its
machine representation, called dataflow graph (DFG). The DF computing model
(DF program) makes it possible to detect parallelism at the lowest level, i.e. at the
level of machine instructions (ILP – Instruction-Level Parallel).

Implementation of a DF computer architecture depends on the mode of instruction
execution of the DF program, which runs as a process of receiving, processing and
sending of activation tokens (Data Token - DT), representing data and flags on
DFG edges. Depending on the way of processing activation tokens in DFG, or
depending on the extent of architectonic support of its execution, two types of
direct DF architectures are distinguished:

• Static models (Fig. 3).

• Dynamic models (Fig. 4).

In the static dataflow model (Fig. 3) the operator in the form of a node is
executable when tokens (values) are presented in all input edges and a token is not
presented in the output [3]. This model can take advantage of structural
parallelism and pipelined parallelism. The static dataflow model found use in
applications with frequent numeric computing structures.

OPERATION
UNIT(S)

INSTRUCTION
QUEUE

ACTIVE
STORE

UPDATE
UNIT

FETCH
UNIT

Operation
packets

Result
tokens

Figure 3

The basic organization of the static dataflow model

In the dynamic dataflow model (Fig. 4) the operator connected to the node is
executable when all input edges contain tokens, whose marks are identical [3]. In
this model, every edge can contain more than one signed token. When the node is
executed, tokens belonging together are removed from input edges and on the
output a token with a responding mark is generated. The dynamic dataflow model
so uses loop parallelism, as well as recursive parallelism, which dynamically
appear during the execution of the program. This kind of architecture must support
the process of connecting operands.

MATCHING
UNIT

TOKEN
QUEUE

PROCESSING
UNIT

PROGRAM
MEMORY

FETCH
UNIT

Matched
token
sets

Enabled
instructions

Data
tokens

Data
tokens

Figure 4
The basic organization of the dynamic dataflow model

In many dynamic dataflow architectures an associative memory is needed to
achieve a connection of suitable data tokens (DT) (operands). At the moment, DF
architectures are favored, in which associative concatenation of tokens is
eliminated by explicit and direct memory addressing – using direct concatenation
of operands (Monsoon, EM-4, Epsilon-2).

4 Multipipeline Processing
Multipipeline processing of DF Graph (DFG) is introduced on Fig. 5, where PSk is
the k-th computational stream of the DFG (k=1, 2, ..., n); AZl, Azp are
correspondent input operands (left, right) at the DFG operator Om in k-th
computational stream PSk.

Figure 5
DFG of n-instructional streams

Any computational stream is executed by the pipeline organization of the
coordinating processor CP, meaning, by the main components of the proposed
architecture. CP consists of a linear structure of the pipeline stages SG, which are
controlled by independent segment microprograms. On the structure level, the
segments represent the pipeline stages LOAD, FETCH, OPERATE, MATCHING
and COPY. Detailed structure organization of the DFKPI model is discussed in
[2].

Synchronization, control and state signals are distributed by the Segment Control
Part (SGC) of the pipeline stages. Concurrent execution of defined phases of the
pipeline processing in the instruction streams of the DFG give possibilities for
parallel implementation of the computing process at the instruction level.

In a direct matching, scheme, storage (called an activation frame) is dynamically
allocated for all the tokens generated by a code-block. The actual usage of
locations within a code-block is determined at compile-time; however, the actual
allocation of activation frames is determined during run-time. In a direct matching
scheme, any computation is completely described by a pointer to an instruction
(IP) and a pointer to an activation frame (FP). The pair of pointers, <FP, IF>, is
called a continuation and corresponds to the tag part of a token. A typical
instruction pointed to by an IP specifies an opcode, an offset in the activation
frame where the match will take place, and one or more displacements that define
the destination instructions that will receive the result token(s). Each destination is
also accompanied by an input port (left/right) indicator that specifies the
appropriate input arc for a destination actor.

5 Multithreading
The notion of a thread in the context of multithreaded processors differs from the
notion of software threads in multithreaded operating systems. In the case of a
multithreaded processors a thread is always viewed as a hardware-supported
thread which can be - depending on the specific form of multithreaded processors
– a full program (single-threaded UNIX process), a light-weight process (e.g. a
POSIX thread) or a compiler – or hardware-generated thread (subordinate
microthread, microthread, nanothread, etc.).

In this point let’s assume the DF contains many sequential threads of control. Each
thread can be thought of as an independent instruction stream, which is executed
in the Von Neumann control-flow way. Each thread has an independent set of
registers. Each PE has a fixed limit as to the number of threads it can actually
process simultaneously [2]. The state of a thread is contained in an execution
interpreter EI (Fig. 6). The EI has five registers, which simply hold data associated
with a particular thread: the execution register E, the value register V (the result of
ALU operation is stored there), and three temporary registers R1, R2, R3.

The execution register E defines context, in which the EI thread is executed. IT
contains a pair of pointers – the instruction pointer IP into instruction memory
(points to the next instruction to be executed), the frame pointer FP into frame
memory (base address of activation frame for procedure calling).

Instruction Store

Frame Store

Ac
tiva

t io
n Sto

re

Execution Interpreter

E

V

R1

R2

R3

Type

Type

Type

Type

Type

P IP PE FP

Value

Value

Value

Value

O
p

c
o

d
e

PB ValueType

Figure 6
Execution Interpreter

Using frame addressing, one program block can have more active calls. The pair
IP and FP has to have the same vertex number, and moreover, this node is PE,
which will execute the thread. Register E also has a field called PORT P (used
only during the Join operation).

Concerning the resident EI threads, every PE has a part of the global address space
of the memory under control. We distinguish two types of address spaces:

instruction memory and data address space. Both have two parts: the node number
and the offset into a part of address space under control of this node.

The PE fields of thread’s E register indicates where it executes, and so references
to the activation frame can be thought of as fetch instructions in the sense of local
references [2,6].

Parallel driving operators, similar to sequential driving signal-operators in the Von
Neumann model, have the task of controlling the instruction stream processing.
While in the sequential driving operators’s case, the operators are able to intervene
only into the sequence of instruction execution, parallel driving operators are able
to form and cancel new computing threads and so influence the number of active
threads.

The basic instructions for manipulating the E and V registers – to create and
synchronize threads, and to make global memory references presented from a
multithread perspective are described in the following.

Assumed a program fragment:

R := (A - B) x (B + 1) (1)

Where R, A, B are local variables held in the activation frame. The example
shows the FP-relative addressing mode for accessing these variables, which can
only make local references, i.e. references to locations on the same node as is
executing the construction. All of these instructions increment the IP field of E to
move to the next instruction.

Command (1) can be compilated into a sequential thread, where every instruction
is assigned into a sequential instruction memory address.

mov V, [FP+A] ;V := A
sub V,B ;V := A – B
mov [FP+R1],V ;R1 := V
mov V,[FP+B] ;V := B
add V,[LITERAL_1] ;V := B + 1
mov [FP+R2],V ;R2 := V
mul [FP+R1] ;V := (A - B)x(B+1)
mov [FP+R],V ;R := V

Fork and Join. To establish a new thread into the computing process, serves the
fork mechanism. Instruction fork is a combination of the jump instruction and
establishing an instruction into a stream of processing instructions. Executing the
„fork label“ instruction has two effects. First, the present thread calls the following
instruction (field IP is incremented) and second, a new thread is established into
the system, whose registers E and V are identical to the present EI, while it is
expected, that field IP in E is the name.

The Fork instruction may set the port in addition to computing a new IP. When a
thread executes a non-joining instruction, its E register specifies the left port.

Two threads executed on the same PE can synchronize each other using the Join
mechanism. For example join-subtract could be described as:

label [FP+0]: sub vL, vR (2)

Join mechanism in expression (2) is indicated by the presence of the memory
operand in front of the colon, which divides the expression.

The idea behind a Join is that two threads will fetch a join-modified instruction at
different times, but only the second one (in time) actually performs the indicated
operation and continues. The first thread to execute merely saves the context of its
V register, and then dies without finishing the join-modified instruction or
proceeding to the next. When the second thread executes the join-modified
instruction, it retrieves the saved value, so that both V registers are available as its
operands. Two threads participating in a Join have different PORT bits in their E
registers, thus left and right operands can be distinguished regardless of the order
in which the two threads happen to execute. The example using FORK and JOIN
to cause the multiplications in expression (1) to execute it in separate threads is
shown as follows:

FORK
L4

+

1
B

R2

Data Store

Control flow

C
on

tro
l f

lo
w

L1:

-

B
A

R1

L2:

GOTO
L5

L3:

L4:

JOIN
2

L5:

+

R2
R1

R

L6:

Figure 7

Parallelized sequential threads

Conclusion

The research of DF architectures was motivated by the need to achieve higher
performance. Research doesn’t eliminate the Von Neumann architecture while it is
able to effectively process dataflow tokens and effectively execute the sequence
code.

In concept, research presented in this article represents the unification into
paradigms of control-flow and data-flow computing. New technologies and
algorithms were presented at a theoretical level.

From a different point of view, multithread processing is a confirmation of the
fact, that parallelism at an instruction level is well taken advantage of in the way
of sequential thread executions in streams.

This addition could lead to further research of DFKPI dataflow architecture, which
provides the utilizing of natural parallelism.

References

[1] Jelšina, M.: Architectures of Computer Systems (in Slovak). Elfa s.r.o.,
Košice, 2002, ISBN 80-89066-40-2

[2] Jelšina, M. a kol.: Design of Computer System Data Flow KPI (in Slovak).
Elfa s.r.o., Košice, 2004, ISBN 80-89066-86-0

[3] Sima D., Fountain T, Kacsuk P.: Advanced Computer Architectures – A
design Space approach (in Hungarian). Szak Kiadó Kft., Bicske, 1998.
ISBN 963 9131 09 1

[4] Tanenbaum, A. S.: Structured Computer Organization (in Hungarian).
Panem Könyvkiadó Kft., Budapest, 2001. ISBN 963 545 282 9

[5] Vokorokos, L.: Data Flow Computer Principles (in Slovak). Monograph.
Copycenter, spol. s.r.o., Košice, 2002. ISBN 80-7099-824-5

[6] Papadopoulos, G.M., Traub, K.R.: Multithreading: A Revisionist View of
Data Flow Architectures. In Proc. of the 18th Int. Symp. on Comp.
Architecture, 1991, Toronto, pp. 344-350

––––––––––––––––––––––––––––––––––––––
Supported by VEGA project No. 1/1064/04

