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Abstract: In many scientific areas there is a frequent need to extract a common pattern 
from multiple data. In most cases, however, an approximate but low cost solution is 
preferred to a high cost exact match. To establish a fast search engine an efficient heuristic 
method should be implemented. Our investigation is devoted to the approximate nearest 
neighbor search (ANN) for unordered labeled trees. The proposed modified best-first 
algorithm provides a O((Nq+Nb)·M+K·Nq·Nb/M) cost function with simple implementation 
details. According to our test results, realized with smaller trees where the brute-force 
algorithm could be tested, the yielded results are a good approximation of the global 
optimum values. 
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1 Introduction 

In many scientific areas there is a frequent need to extract a common pattern from 
multiple data. The most common structure of the data is a hierarchy or tree. The 
task is to determine the set of sub-trees having the best matching with the pattern. 
One of the important application areas for sub-tree matching is the area of 
information systems, where the most common new storage format is the XML 
tree. XML is seeing increased use and promises to fuel even more applications in 
the future. An XML document can be modeled as a tree. Each node in this tree 
corresponds to an element in the document. Each edge represents inclusion of the 
element corresponding to the child node under the element corresponding to the 
parent node in the XML file. 

A significant trend in data management is to store the database in XML format. A 
common characteristic of databases is that the created data tree is relatively wide 
and relatively shallow. Taking for example an insurance company, the number of 
customers and the number of contracts or the number of insured objects can be 



several thousands or millions. On the other hand, the number of encapsulation 
levels in the data structure for database objects may be less than 10. Thus the 
depth of the database tree may be about 10 and the number of leaves may be some 
millions. The goal of our investigation is to find a method for approximate subtree 
matching which is suited for this kind of trees. 

In these applications the nodes of a tree are characterized by one or more 
attributes. The description vector of the nodes is called the label of the nodes. 
Focusing on database applications, the label of a node contains always two 
elements: a type and a value description. Regarding the type component, the tree 
should meet a schema constraint. The constraints for value component may be 
given by integrity rules. In some areas, not only the node types but also the order 
of nodes is important. In this case, the children are assigned to an ordering number 
in the scope of the parent. XML documents, for instance have an ordered and 
labeled tree structure. In our investigation we are focusing on unordered labeled 
tree structures. A recent workshop report from Yale suggested that more research 
should be undertaken to improve the heuristic search using algorithms designed to 
meet the demand made by increasingly large tree datasets [1]. 

Reviewing [2] the different researched approaches to comparing trees, a great 
number of algorithms have been developed so far to solve these problems. P. Bille 
published an extensive survey [3] on comparing trees with exact searching 
methods. As a conclusion from his work it turned out that all of the unordered 
versions of the problems in general are NP-hard. Indeed, the tree edit distance and 
alignment distance problems are even MAX SNP-hard. However, using special 
constraints polynomial time algorithms are available, just like for the ordered 
versions of the problems. These are all based on the classic technique of dynamic 
programming. Also, a large amount of work has been performed for comparing 
unordered trees based on various distance measures, especially on edit distance as 
the most commonly used distance measure. Shasha et al. [4], however, proposed a 
new approach, called Atree-Grep. They addressed the approximate nearest 
neighbor search problem for unordered labeled trees. Their algorithm, called 
‘pathfix’, consists of two phases. First, the paths of the trees are stored in a suffix 
array and then the number of mismatching paths are counted between the query 
tree and the data tree. To speedup the search, they use a hash-based technique to 
filter out unqualified data trees at an early stage of the search. The algorithm has 
been implemented into two special Web-based search engines and proved to be 
fast, particularly when the dictionary size of node labels is large. 

2 Distance Measures for Tree Comparison 

As could be seen from the review of the researches in tree comparison, most of the 
proposals in subtree matching are based on the edit distance between trees. This 



distance metric is a natural extension of the edit distance concept used for string 
comparisons. This metric provides an exact distance measurement between the 
trees. The drawback of these algorithms is the high cost of the computations. In 
the case of online applications with large tree datasets, the execution time is a 
crucial factor. In the case of edit distance, a set of elementary transformation 
functions is defined on the TD set of trees. This set is denoted as ED. The cost 
value of the elementary transformations is a non-negative real number. The 
corresponding cost function is denoted by 

c : ED → R+. 

It is assumed that TD is closed to ED, i.e. 

∀e ∈ ED  :  e : TD → TD, 

∀ T1, T2 ∈ TD : ∃ e1,e2,…,em ∈ ED: e(T1) = em ο em-1 ο … e2 ο e1(T1) = T2. 

Let us denote the set of chain of transformations from Ti to Tj by Ei,j. The cost of 
chain e is defined as the sum of the single transformation steps: 

c(e) = Σ c(ei). 

The edit distance between Ti and Tj is defined as the minimal cost of 
transformation chains from Ti to Tj: 

ci,j = min{ c(e) | e ∈ Ei,j }. 

Usually, the following elementary e operations are defined for tree objects: 

- relabel: assigns a new node name to the root of the tree 

- insert: inserting a new node into the children of the root node 

- delete: deleting a node from the children of the root node 

- insert tree: inserting a tree under the root node 

- delete tree: deleting a tree from the children of the node 

The list of elementary transformations with minimal cost is usually generated with 
a dynamic programming method. According to [3, pp.7], the tree distance value 
can be calculated using the following recursive formula: 

d(0,0) =   0 

d(F,0) =   d(F-v,0) + c(v,0) 

d(0,F) =  d(0,F-v) + c(0,v) 

d(F1,F2) = min  { 
d(F1-v,F2)  + c(T(v),0) 

d(F1,F2-v)  + c(0,T(v)) 

d(F1-T(v),F2- T(w))  + c(T(v),T(w)) 



where F denotes a tree and T(v) denotes a tree with root element v. The 
computation cost of the basic dynamic programming method for trees is O(|T|4). It 
is proved in [4] that the ANN problem for edit distance metric is an NP-complete 
problem. In spite of this difficulty, most of the proposals for ANN searching for 
trees use the edit distance measure. There are very few proposals that apply a 
simplified distance function to provide a lower cost solution. A good example for 
this approach is [4], where the distance from T1 to T2 is measured with the total 
number of root-to-leaf paths in T1 that do not appear in T2. The nodes in T2 that do 
not appear in T1 can be freely removed. 

3 The Proposed Matching Algorithm 

To provide a more efficient dissimilarity computation, a modified distance 
measure was created. During the editing process every vertex of the query tree is 
either transformed into a vertex of the base tree or is deleted. Based on this 
transformation, every vertex of the query tree can be mapped either to a target 
vertex or to the sink symbol. Using this approach, a generalized mapping can be 
defined between the query and the base tree. We define m( ) as the distance 
mapping from T1 to T2 in the following way: 

1. m : V(T1)  →  V(T2)  ∪ ε 

2. ∀v, m(v)  ∈ V(T2) : l(v) = l(m(v)) 

3. ∀v1 ≠ v2, m(v1), m(v2)  ∈ V(T2) : m(v1) ≠ m(v2) 

4. ∀v1 ≠ v2, m(v1), m(v2)  ∈ V(T2): v1 < v2 ⇔ m(v1) < m(v2) 

The fourth property is called ancestor condition, the ancestor-descendants 
relationship among the query vertices must be preserved in the target tree, too. 
Other types of relationships among the query vertices are neglected and not 
preserved. The parent-child relationships are the only important information stored 
in the query tree. The absence of an edge means in our approach a 'do not know' 
information. In this case, we do not care about the existence of an edge between 
the mapped vertices in the base tree. Figure 1 shows an example for this mapping. 

 

 

 

   a) b)  c) 
Figure 1 

Figure 1a) and Figure 1b) show valid mappings. The sibling nodes in the query 
tree are mapped to sibling nodes in Figure 1a), and to parent-child nodes in Figure 



1b). Figure 1c) shows an invalid mapping as the parent-child relationship is not 
preserved. Based on this mapping, a distance value can be defined between two 
trees. The cost of mapping m is defined as the sum of the vertex mappings related 
to the query tree: 

cost(m) = Σ n ∈ V(T) c(n), 

where 
C2,  if m(n) = ε  ∨  m(r(T)) = ε 
0, if n = r(T)  ∧  m(r(T)) ≠ ε c(n) = {
C1  (d(m(n),m(pp(n)) – 1) otherwise. 

In this definition, pp(n) denotes the nearest ancestor of n in the query tree which is 
mapped to a non-ε element. If the root of the query tree is mapped to ε then c(n) is 
C2, otherwise the path from n to r(T) (excluding n and including r(T)) contains 
minimum one vertex mapped to a non-ε value. In this case both m(n) and m(pp(n)) 
are non-ε elements. The d( ) function denotes the length of path from m(pp(n)) – 
m(n) in the base tree. As mapping m preserves the parent-child relationship, 
m(pp(n)) is an ancestor of m(n). Thus d( ) yields a positive integer value. C1 and 
C2 are cost units. C1 corresponds to gap-lengths between two preserved vertices 
and C2 denotes the cost for vertex deletion. In our approach, C2 is greater than C1 
since the absence of an element means a larger difference than the relocation of 
the element. 

In [2] we introduced a modified best first algorithm that works on a state-tree, the 
nodes of which are assigned not to the vertices but to the vertex mappings of the 
query tree. In this paper, the proposed method is designed to work with database 
trees where the trees have a small depth value and a large width value. Another 
assumption is that the number of node-types is low but the number of the different 
node-values is large as a database contains usually several thousand instances of 
the same element type. Another characteristic of the data tree is that the same type 
can not occur more than once in neither schema paths. This requirement is usually 
met in the applications since the usage of recursive structures is not allowed in 
most systems, or at least it makes the structure too complex for users. Figure 2a) 
shows a valid while Figure 2b) shows an invalid schema. 

   
a) b) 

Figure 2 
 



A query tree usually contains some values to be matched in the data-tree. Taking a 
query to retrieve the departments located in London and having employees with a 
1000 Euro salary, the query tree is given by the following tree: 

 
Figure 3 

The query tree contains two nodes with type and value pairs (Salary=1000 and 
City=“London”). The result of the query is the set of department nodes having the 
given descendant nodes. The number of nodes with type ’Salary’ may be very 
large, but the number of nodes with value ’Salary=1000’ is significantly lower. 
The query search engine should detect paths between the matched nodes. These 
paths in the data-tree should correspond to the ancestor-descendant relationships 
given in the query tree. It is clear that, it is better to discover these paths from the 
leaves towards the root than in reverse direction. A node can have only one parent 
but may have a large number of children. Of course, the bottom-up direction can 
only be selected if the matching descendant nodes are discovered first. In the 
proposed algorithm, an index structure is generated to find the matching nodes in 
an efficient way. 

Traditional database management systems usually use B-tree indexes to provide 
fast access to object instances. The cost of index search is in general O(log(N)). A 
similar index structure for the T data tree is generated in the preparation phase. 
According to [5], this work can be performed with O(N log(N)) computational 
cost. In the searching phase a Q query tree is given. The approximate matching 
algorithm first selects the nodes in T matching the nodes in Q. Matching is 
performed using the generated index structure. The query tree is transformed into 
a list of query strings. A query string is a path in the query tree from a leaf to the 
root. The number of query strings is equal to the number of leaf nodes in the query 
tree. The query strings for the example query are the followings: 

Department; City=”London” 

Department; Employee; Salary=1000 

In the next phase, the matching nodes are processed in decreasing depth order 
related to the query tree. In the example, the nodes are processed in the following 
order: 

 
Figure 4 



For every node the path to the relative root is discovered. A node is a relative root 
if it is an ancestor and its type is equal to the type of the root in the query tree. For 
every discovered relative root nodes an administration vector is created. The 
elements of this vector correspond to the query strings of the query tree. The 
administration vector stores the current minimal mapping costs for the query 
strings. 

During node processing, the path to the relative root is compared to each query 
strings. The cost of mapping is calculated and if it is lower than the current 
minimum value, the administration vector is updated. The comparison process can 
be stopped if the current sub-cost is higher than or equal to the current minimum 
value. At the end of path evaluation in the data tree, the selected nodes of this path 
are deselected. In the next iteration only the selected nodes are processed. After 
processing all the selected nodes, the best matching costs for relative root nodes 
are calculated from the corresponding administration vectors. In the final step, the 
relative root nodes are ranked based on the calculated minimal cost value. The 
generated list contains all approximation sub-trees having a distance less than a 
given threshold. 

The cost of the proposed method can be estimated on the following way. In the 
first step, data nodes related to the nodes of the query tree are selected. Let us use 
the following denotations: 

N: the number of nodes in the data tree, 

M: the number of nodes in the query tree, 

K: the average number of instances for a value, 

L: the average number of instances for a type. 

Using the pre-generated index structure, the node selection phase requires 

O(M ( log(N) + K) + log(N) + L) 

cost. The number of the selected data nodes is O(M K). The cost of path 
evaluation for a selected node is O(M) as the length of the paths is O(1). The cost 
for best matching can be calculated from the administration vectors with O(M L) 
cost. Thus the cost of the second phase is 

O( M2 K + M L). 

The ranking cost is 

O(L log (L)) 

if all approximation subtrees are requested in the query. One can assume that 

N >> L >> K > M 

holds. Thus the total cost can be estimated by 

O(M log(N) + M2K + ML + L log(L)). 



4 Test Results 

To be able to test the algorithm we created a test implementation by using SciLab 
[6] and its extension library MatNet for modeling graphs. Each node of the graph 
has a label consisting of a type, value pair. Considering the possibilities of Scilab's 
[6] MatNet we used the node attributes node_color and node_diam as attribute 
type and value. The visualization of the graph shows the node types by different 
colors and its values by different node diameters. For testing we constructed a data 
tree shown on Figure 5 and a query tree shown on Figure 6. Matching nodes are 
highlighted on both figures. 

 
Figure 5 

The implementation is using the following workflow: i) Decomposition of a given 
query tree to its strings. ii) Indexing the data tree by collecting and ordering the 
node identifier, node type (node_color) and value (node_diam). Ordering by node 
type and value is done ascending. Next iii) the program is searching in the data 
tree for the successors of all strings from the query tree by using binary search 
algorithm [5] on the previously constructed index structure. Cost calculation is 
based on the alignment distance of each query string to the date tree. We defined 
two cost factors, one for the case when a node in the query string is not a 
predecessor of the corresponding path in the data tree, we call this CQDROP. The 
other cost factor CHOP is for the inverse case, when a node on the data path is not 
in the corresponding query string. The alignment cost is a sum of all occasions of 
cost factors, summarized for all corresponding query strings and data path pairs. 
The test program is iv) calculating the alignment cost based on the number of data 
paths corresponding to the query strings. 

 
Figure 6 



The calculation of the alignment cost of the query tree on Figure 6 is performed to 
the data tree on Figure 5. Considering the decomposition of the query tree to four 
strings, beginning from the leafs – from left to right – we can see that the first 
string can be completely aligned to the data tree, i.e. the alignment cost for this 
string is zero. For the second string, which cannot be found in the data tree we 
define a maximal cost CMAX. On the third string we can find the leaf and the 
head node of the query string in the data tree, but the node in the middle is not 
found, therefore we add a cost 1*CQDROP. Since the corresponding path in the 
data tree contains two more nodes which cannot be found in the query string we 
add 2*CHOP to the cost which will be for this query string 2CHOP+CQDROP. In 
the case for the last query the same occurs as for the second string: it cannot be 
found in the data tree, therefore a maximal cost CMAX is added. Thus the total 
cost of alignment will be C=0+CMAX+(2*CHOP+CQDROP)+CMAX. 

A future work will show the computational costs used by the test implementation. 
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