
Message–passing Implementation for Process
Functional Language1

Miroslav Vidiščak
Miroslav.Vidiscak@tuke.sk

Abstract: In this paper we introduce the concept an implementation of distributed
programming in PFL – a process functional programming language and describe
implementation of concurrency in other Haskell–like parallel functional languages –
Concurrent Haskell and GpH. The process of writing parallel program is complicated by
the need to specify both the parallel behaviour of the program and the algorithm that is to
be used to compute its result. Main ideas about implementation of parallel execution in
PFL are make PFL able to handle huge set of problems that are effective running only in
distributed environments.

Keywords: functional languages, process functional language, message–passing interface,
distributed execution

Introduction

Functional languages are programming languages, which are radically different
from imperative languages. A program is expressed as a function from its input to
its output. This differ functional languages from many of real systems, because
they are not functional. The programs are executed using I/O, exceptions, interrupt
handling, communication, etc. depending on the application to which they are
proposed.

Functional languages have at least two benefits: the first is that they are
mathematically tractable and hence they can be reasoned about more easily than
conventional languages. This also makes program derivation much easier. The
second benefit is that functional programs are amenable to parallel evaluation.

Concurrency is necessary in nearly all applications nowadays. A concurrent
program does several things at once and consists of a number of execution units

1 This work was supported by VEGA Grant No. 1/1065/04 – Specification and

implementation of aspects in programming.

(either processes or threads), which are supposed to be executed independently at
the same time on the same processor or computer.

In past, concurrency was based only on processes that were statically defined from
within the program for efficiency. Later, the evolution of software required a more
flexible approach to concurrency, where concurrent systems were designed
without the assumption on how many processes will be needed. This led to the
inclusion of mechanisms for dynamic process creation in procedural languages.
Still, processes were too monolithic to meet the requirements of today's software
since several activities need to take place within each process. Many programming
languages and systems are designed or specifically adapted to support multi–
threading [2].

Process functional language is an experimental imperative functional
programming language [4, 5, 6, 7]. PFL incorporates all purely functional features.
In addition, new special constructs are used in process functional language for
increasing the run–time performance. Process functional language reduces a gap
between a purely functional language and an imperative language. It is also
proved that all imperative programs can be transformed to process functional
programs [6]. Currently we have three generators from PFL – a generator to Java,
Haskell and C++ with support for Message–Passing Interface [8] and extend PFL
to work in distributed environment.

The goal of MPI is to develop a widely used standard for writing message–passing
programs. As such the interface attempts to establish a practical, portable, efficient
and flexible standard for message passing [8]. Nowdays, there are several
implementation of MPI, including versions for networks of workstations, clusters
of personal computers, distributed–memory multiprocessors, and shared–memory
machines.

1 Parallel Functional Languages

At the present time, there are many implementations of parallel functional
languages, which used different models for implementation parallel execution.
Each of them has own advantages and disadvantages.

1.1 Concurrent Haskell

Concurrent Haskell is a concurrent extension to the functional language Haskell
[3]. It adds to Haskell only four new primitive operations, which are both
expressive and easy to implement.

Concurrent Haskell provides a new primitive forkIO, which starts a concurrent
processes:

 forkIO :: IO () → IO ()

 forkIO m s = s’ ‘par‘ return r s

 where (r, s’)= m s

forkIO is an action that takes an action as its argument and spawns a concurrent
process to perform that action. The I/O and other side effects performed by m s are
interleaved in an unspecified fashion with those that follow the forkIO.

Concurrent Haskell run as a single Unix process, performing its own scheduling
internally. Each use of forkIO creates new process. The scheduler can be told to
run either pre-emptively (timeslicing among runnable processes) or non-pre-
emptively (running each process until it blocks). The scheduler only switches
processes at well defined points at the beginning of basic blocks.

Synchronisation in Concurent Haskell is based on mutable variables (MVars)[1].
Mutable variable is similar to a lock variable and represents a mutable location
that is either empty or contains a value of type t. The following primitives have
been provided to create, access and alter MVars:

 newMVar :: IO (MVar t)

 takeMVar :: MVar t → IO t

 putMVar MVar t → t → IO ()

Primitive newMVar creates a new MVar, takeMVar blocks until the location is
nonempty, then reads and returns the value of an MVar, putMVar writes a value to
MVar.

Thus to implementation as single Unix thread, Concurrent Haskell is well–suited
for running on single machine. Enhancement to run in distributed environment is
hard and need more low–level programming.

1.2 GpH/GUM

GpH (Glasgow Parallel Haskell), extends Haskell with modest parallelism
primitives, GUM (Graph Reduction on a Unified Model) is the parallel system
that supports GpH [12].

GUM is architecture–independent runtime systems for Glasgow Parallel Haskell
12, a parallel variant of the Haskell lazy functional language. It can be used on
both shared–memory and distributed–memory architectures. It used standard PVM
message–passing library [13].

GpH is a small extension to the standard Haskell lazy functional language. The
model of parallelism in GpH is mainly implicit with dynamic resource allocation.
All work for parallel execution, like mapping of threads to processors,
communication among threads and thread synchronization, is done by runtime
system (GUM).

Simple parallel programming model is providing operator ‘par’. The expression

 p ‘par’ e

has the same value as e and indicate that p could be evaluated by a new parallel
thread, with the parent thread continuing evaluation of e. Since control of
sequencing can be important in parallel functional languages, a sequential
composition operator ‘seq‘ is used

 e1 ‘seq’ e2

The expression has the same value as e2, but e2 cannot be evaluated before e1 is
evaluated.

Better parallel performance in GpH is done with using lazy higher–order functions
to separate the two concerns: specifying the algorithm and specifying the
program’s dynamic behaviour. A function definition is split into two parts, the
algorithm and the strategy, with values defined in the former being manipulated in
the latter. The algorithmic code is consequently uncluttered by details relating
only to the dynamic behaviour. In fact the driving philosophy behind evaluation
strategies is that it should be possible to understand the semantics of a function
without considering its dynamic behaviour.

A strategy is a function that specifies the dynamic behaviour required when
computing a value of a given type. The simplest strategies introduce no
parallelism: they specify only the evaluation degree.

2 PFL

Process functional language PFL [7] is language with positive properties
imperative and functional languages. New PFL elements – environment variables,
loop comprehension and spatial types, differ the process functional language from
a purely functional one. The approach to programming is the same like in
functional language (with function/process application). In addition, using the
environment variables we can manipulate with states like in imperative languages.
PFL also provides ways to profiling functional languages [5, 9, 10] and abstract
type definitions [14, 15].

2.1 Computation Strategies

Any parallel programming language must be based on certain assumptions about
the underlying machine. The philosophy to parallel programming with functional
languages has been to find the minimum necessary to write efficient parallel
functional programs for the target machine. In particular it was desired to relieve
the programmer from as much parallel organization as possible. The programmer
must devise a parallel program and annotate it to indicate which expressions are
suitable for parallel evaluation. Thus the programmer is responsible for addressing
the question what to spark? but not where or when execute tasks.

We can recognize these types of idealized parallelism types:

− Farm parallelism

o Farm parallelism paradigm consists of the entities master and multiple
slaves. The master is responsible for decomposing the problem into small
tasks (and distributes these tasks among a farm slave processes), as well as
for gathering the partial results in order to produce the final result of the
computation. The slave processes execute in a very simple cycle: get a
message with the task, process the task, and send the result to the master.
The computation terminates when all processes terminate. Usually, the
communication takes place only between the master and the slaves.

− Pipeline parallelism

o This is a more fine–grained parallelism, which is based on a functional
decomposition approach: the tasks of the algorithm, which are capable of
concurrent operations, are identified and each processor executes a small
part of the total algorithm. The pipeline is one of the simplest and most
popular functional decomposition paradigms. Processes are organized in a
pipeline – each process corresponds to a stage of the pipeline and is
responsible for a particular task. The efficiency of this paradigm is directly
dependent on the ability to balance the load across the stages of the
pipeline. This paradigm is often used in data reduction or image processing
applications.

o The tasks (processes) are executed to solve different problems Pi, each
processing the same processing the same type of data. Therefore this
decomposition is sometimes called functional decomposition. In general, it
is hardly decompose a problem to a sufficiently long pipeline of
subproblems, which would utilize high number of processors.

− Expansive parallelism

o Expansive parallelism is method where a problem P is suggested to be
solving set of n same problems recursively. For n=2 method is called
divide–and–conquer. The divide and conquer approach is well known in

sequential algorithm development. A problem is divided up into two or
more subproblems. Each of these subproblems is solved independently and
their results are combined to give the final result. We can identify three
generic computational operations for divide and conquer: split, compute
and join. The application is organized in a sort of virtual tree: some of the
processes create subtasks and have combined the results of those to
produce an aggregate result.

− Massive parallelism

o Massive parallelism problem P is solved at the same time on a set of data
in parallel. The computation is based on independent tasks running on
independent data sets also data sets may be overlapped. In a typical case
this is fine grained parallelism, that may be utilized on SIMD architectures
using data parallel programming model, but also on MIMD architectures
using message passing programming model (in a more coarser manner,
with the additional software overhead).

Two popular methods for writing parallel programs are expressing parallelism
using combinators (such as map and scan), and farm parallel programming
(which is commonly supported by many available parallel systems). These
methods offer complementary advantages and are used in implementation of
distributed application of PFL.

Parallel programming languages consist of two parts:

− A set of parallel operations. For high level programming with farm
parallelism, every parallel operation is expressed directly as a combinator. For
massive parallelism, different mechanisms are used, depending on whether the
parallel operation is purely local or uses interprocessor communication.

− A coordination language, which expresses with parallel combinators, the
coordination language could comprise the entire the entire functional language
(e.g. Haskell), but it could also be restricted to functions written in a particular
form. For conventional farm parallel programming method, the coordination
language is C or Fortran (if we used MPI).

The combinator method is well suited for abstract, high level specifications of
algorithms. A family of functions, such as map, fold and scan, is used to express
parallel computations. For example, a set of parallel local computations using the
same function f can be expressed as par_map f xs, where the data structure of xs,
are executed simultaneously in different processors. There is a rich set of
mathematical laws relating the combinators, making this approach well suited for
formal reasoning as well as a variety of optimisations and program
transformations.

The farm parallelism programming method is another popular model for
programming parallel computers. Many available parallel systems support this

style (SPMD – Single program, multiple data), and it offers relatively good
program portability. The idea behind SPMD is simply that the programmer writes
a program that will run on one processor, but the parallel operating system
executes it concurently. The term SPMD is apt because the processors all use the
same program, but they normaly have different data in their local memories.

Both of these methods are used in implementation of distributed computation in
PFL.

2.2 Generator Architecture

Generator for distributed implementation of PFL use existing implementation of
PFL, but it extends to generate code to C++ with or without MPI support. In this
way, we can measure effectivity of implementation PFL in distributed
environment. Other aspect of implementation, like profiling, use existing base of
PFL implementation [9].

As a base for generating distributed computation was choosen a C++ language for
easily binding to MPI. As a mid–layer between pure C++ and MPI is used object–
oriented implementation of MPI called 11 [11]. It allows using full features of
C++ – overloading operators, polymorphism, inheritance, abstract datatyping in
easy way. We can use C++ extension of MPI–2, but in present time, there is only
few implementation of MPI–2.

2.2.1 Implementation of Basic Send/Receive Functions

Primitive Send/Receive functions are defined explicitly. Primitive function type
definition is placed in source code of PFL program:

 primitive mpiSend :: Integer → List a → ()

and function definition in a file Primitives.ctp written in a C++ language:

 static Object* mpiSend(Object* a, Object* b){

 return (((new Constructor("()", 0)) → init())→ apply(

 11_COMM_WORLD[*((Long*)a)].Send((Object*)b))

);

}

2.2.2 Implementation of Collective Operations

Collective operations, like map, foldl, etc. are implemented using different
method.

Here is a generated code for par_map that is generated throught PFL generator
with MPI support switch enabled (source code in PFL is par_map plusInteger 3
lista, where lista is is generic list, contains integer number):

class pfl_par_map : public Function{

virtual Object* expression(void) {

 Object *oro_19184575 = NULL, *oro_33409388 = NULL, *oMsg;

 int nSize=11_COMM_WORLD.Size();

 int nRank=11_COMM_WORLD.Rank();

 oro_33409388 = ((Function*) ((Function*) new pfl_lista()) → init()) →
expression();

 int iCount = oro_33409388→args→size() / nSize;

 11_Request_array ra(iCount);

 if(nRank == 0){

 for(int i=1; i<nSize; i++)

 for(int j=(i-1)*iCount; j<oro_33409388→args→size(); j++){

 oMsg = ((Function*)oro_33409388→args→at(j));

 11_COMM_WORLD[i].Send(oMsg);

 }

 oro_19184575 = ((Function*)new pfl_par_map())→init();

 for(i=1; i<nSize; i++)

 for(int j=(i-1)*iCount; j<oro_33409388→args→size(); j++){

 11_COMM_WORLD[i].Recv(oMsg);

 ((Function*)oro_19184575)->apply(oMsg);

 }

 }

 else{

 Object* oMsg_19184575;

 for(int i=0; i<iCount;i++){

 11_COMM_WORLD[0].Recv(oMsg);

 oMsg_19184575 = ((Function*) ((new pfl_plusInteger()) → init()) →
apply((new Long(3))))) → apply(oMsg)) → expression();

 11_COMM_WORLD[0].Send(oMsg_19184575);

 }

 ra.Waitall();

 return oro_19184575;

 }

};

Conclusions

In this paper a methodology for implementation a message–passing paradigm
from a PFL specification was shown. Sections of this methodology are mechanical
in nature, and could be supported by transformation tools. Using this
methodology, we have derived small parallel programs from specifications. The
message–passing model has been implemented using MPI; with this the derived
programs have been executed on a group of workstations. A direction for future
work is to improve effectivity of message–passing implemetation. For now, we
use simple synchronisation mechanism (ra.Waitall()) for waiting to finish
message–passing communications. Detailed description about particular part of
implementation (object hierarchy, garbage collector, etc.) will be presented in
further papers.

References

[1] Finne, S. and Jones, S., P. J.: Concurrent Haskell, In Principles Of
Programming Languages, St. Petersburg Beach, Florida, 1996, pp. 295–308

[2] Hammond, K.: Parallel Functional Programming: An Introduction,
International Symposium on Parallel Symbolic Computation,
Hagenberg/Linz, 1994, 19 pp.

[3] Jones, S. P., Gordon, A., Finne, S.: Concurrent Haskell, Conference Record
of POPL '96: The 23rd ACM SIGPLANSIGACT Symposium on Principles
of Programming Languages, Glasgow, 1996, 11 pp.

[4] Kollár, J.: Control–driven Data Flow, Journal of Electrical Engineering,
Vol. 51. No. 3–4, 2000, pp. 67–74

[5] Kollár, J., Porubän, J., Václavík, P., Vidiščak, M.: Lazy State Evaluation of
Process Functional Program, 5th International Conference ISM 2002,
Rožnov pod Radhoštim, Czech Republic, April 22–24, 2002, ISBN
8085988704

[6] Kollár, J.: PFL Expressions for Imperative Control Structures. Computer
Engineering and Informatics conference with International participation,
Oct. 14–15, 1999, Herľany, Slovakia, pp. 23-28 ISBN 80-88922-05-4

[7] Kollár, J.: Process Functional Programming, 33rd Spring International
Conference MOSIS'99–ISM'99, Rožnov pod Radhoštem, Czech Republic,
April 27–29, 1999, ACTA MOSIS No. 74, pp. 41–48

[8] MPI–2: Extensions for the Message–Passing Interface, Message Passing
Interface Forum July 18, 1997, Tennessee, 323 pp.

[9] Porubän, J.: Profiling process functional programs, PhD Thesis, DCI FEI
TU Košice, 2004, 90 pp. (in Slovak)

[10] Porubän, J.: Profiling process functional programs, Research report, DCI
FEI TU Košice, 2002, 51.pp.

[11] Squyres, J. M., Willcock, J., McCandless, B. C., Rijks, P. W., Lumsdaine,
A.: Object Oriented MPI (OOMPI): A C++ Class Library for MPI, Open
System Laboratory, Pervasive Technologies Labs, Indiana University,
September 3, 2003, 71 pp.

[12] Trinder, P. W., Barry, E., Davis, M. K., Hammond, K., Junaidu, S. B.,
Loidl, H., Loogen, R., Jones, S., P.: GpH: An Architecture–independent
Functional Language, IEEE Transactions on Software Engineering, 1998,
23 pp.

[13] Trident, P., W., Hammond, K., Mattson, J., S., Partridge, A., S., Jones, S.,
P.: GUM: A Portable Parallel Implementation of Haskell, PLDI'96–
Programming Languages Design and Implementation, Philadelphia, 1996,
pp. 78–88

[14] Václavík, P.: Abstract types and their implementation in a process
functional programming language, PhD Thesis, DCI FEI TU Košice, 2004,
111 pp. (in Slovak)

[15] Václavík, P.: Abstract types and their implementation in a process
functional programming language, Research report DCI FEI TU Košice,
2002, 48 pp. (in Slovak)

