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Abstract: In this paper we introduce the concept an implementation of distributed 
programming in PFL – a process functional programming language and describe 
implementation of concurrency in other Haskell–like parallel functional languages – 
Concurrent Haskell and GpH. The process of writing parallel program is complicated by 
the need to specify both the parallel behaviour of the program and the algorithm that is to 
be used to compute its result. Main ideas about implementation of parallel execution in 
PFL are make PFL able to handle huge set of problems that are effective running only in 
distributed environments. 
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Introduction 

Functional languages are programming languages, which are radically different 
from imperative languages. A program is expressed as a function from its input to 
its output. This differ functional languages from many of real systems, because 
they are not functional. The programs are executed using I/O, exceptions, interrupt 
handling, communication, etc. depending on the application to which they are 
proposed. 

Functional languages have at least two benefits: the first is that they are 
mathematically tractable and hence they can be reasoned about more easily than 
conventional languages. This also makes program derivation much easier. The 
second benefit is that functional programs are amenable to parallel evaluation. 

Concurrency is necessary in nearly all applications nowadays. A concurrent 
program does several things at once and consists of a number of execution units 
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(either processes or threads), which are supposed to be executed independently at 
the same time on the same processor or computer. 

In past, concurrency was based only on processes that were statically defined from 
within the program for efficiency. Later, the evolution of software required a more 
flexible approach to concurrency, where concurrent systems were designed 
without the assumption on how many processes will be needed. This led to the 
inclusion of mechanisms for dynamic process creation in procedural languages. 
Still, processes were too monolithic to meet the requirements of today's software 
since several activities need to take place within each process. Many programming 
languages and systems are designed or specifically adapted to support multi–
threading [2]. 

Process functional language is an experimental imperative functional 
programming language [4, 5, 6, 7]. PFL incorporates all purely functional features. 
In addition, new special constructs are used in process functional language for 
increasing the run–time performance. Process functional language reduces a gap 
between a purely functional language and an imperative language. It is also 
proved that all imperative programs can be transformed to process functional 
programs [6]. Currently we have three generators from PFL – a generator to Java, 
Haskell and C++ with support for Message–Passing Interface [8] and extend PFL 
to work in distributed environment. 

The goal of MPI is to develop a widely used standard for writing message–passing 
programs. As such the interface attempts to establish a practical, portable, efficient 
and flexible standard for message passing [8]. Nowdays, there are several 
implementation of MPI, including versions for networks of workstations, clusters 
of personal computers, distributed–memory multiprocessors, and shared–memory 
machines. 

1 Parallel Functional Languages 

At the present time, there are many implementations of parallel functional 
languages, which used different models for implementation parallel execution. 
Each of them has own advantages and disadvantages. 

1.1 Concurrent Haskell 

Concurrent Haskell is a concurrent extension to the functional language Haskell 
[3]. It adds to Haskell only four new primitive operations, which are both 
expressive and easy to implement. 



Concurrent Haskell provides a new primitive forkIO, which starts a concurrent 
processes: 

 forkIO :: IO () → IO () 

 forkIO m s = s’ ‘par‘ return r s 

  where (r, s’)= m s 

forkIO is an action that takes an action as its argument and spawns a concurrent 
process to perform that action. The I/O and other side effects performed by m s are 
interleaved in an unspecified fashion with those that follow the forkIO. 

Concurrent Haskell run as a single Unix process, performing its own scheduling 
internally. Each use of forkIO creates new process. The scheduler can be told to 
run either pre-emptively (timeslicing among runnable processes) or non-pre-
emptively (running each process until it blocks). The scheduler only switches 
processes at well defined points at the beginning of basic blocks. 

Synchronisation in Concurent Haskell is based on mutable variables (MVars)[1]. 
Mutable variable is similar to a lock variable and represents a mutable location 
that is either empty or contains a value of type t. The following primitives have 
been provided to create, access and alter MVars: 

 newMVar :: IO (MVar t) 

 takeMVar :: MVar t → IO t 

 putMVar MVar t → t → IO () 

Primitive newMVar creates a new MVar, takeMVar blocks until the location is 
nonempty, then reads and returns the value of an MVar, putMVar writes a value to 
MVar. 

Thus to implementation as single Unix thread, Concurrent Haskell is well–suited 
for running on single machine. Enhancement to run in distributed environment is 
hard and need more low–level programming. 

1.2 GpH/GUM 

GpH (Glasgow Parallel Haskell), extends Haskell with modest parallelism 
primitives, GUM (Graph Reduction on a Unified Model) is the parallel system 
that supports GpH [12]. 

GUM is architecture–independent runtime systems for Glasgow Parallel Haskell 
12, a parallel variant of the Haskell lazy functional language. It can be used on 
both shared–memory and distributed–memory architectures. It used standard PVM 
message–passing library [13]. 



GpH is a small extension to the standard Haskell lazy functional language. The 
model of parallelism in GpH is mainly implicit with dynamic resource allocation. 
All work for parallel execution, like mapping of threads to processors, 
communication among threads and thread synchronization, is done by runtime 
system (GUM). 

Simple parallel programming model is providing operator ‘par’. The expression 

 p ‘par’ e 

has the same value as e and indicate that p could be evaluated by a new parallel 
thread, with the parent thread continuing evaluation of e. Since control of 
sequencing can be important in parallel functional languages, a sequential 
composition operator ‘seq‘ is used 

 e1 ‘seq’ e2 

The expression has the same value as e2, but e2 cannot be evaluated before e1 is 
evaluated. 

Better parallel performance in GpH is done with using lazy higher–order functions 
to separate the two concerns: specifying the algorithm and specifying the 
program’s dynamic behaviour. A function definition is split into two parts, the 
algorithm and the strategy, with values defined in the former being manipulated in 
the latter. The algorithmic code is consequently uncluttered by details relating 
only to the dynamic behaviour. In fact the driving philosophy behind evaluation 
strategies is that it should be possible to understand the semantics of a function 
without considering its dynamic behaviour. 

A strategy is a function that specifies the dynamic behaviour required when 
computing a value of a given type. The simplest strategies introduce no 
parallelism: they specify only the evaluation degree. 

2 PFL 

Process functional language PFL [7] is language with positive properties 
imperative and functional languages. New PFL elements – environment variables, 
loop comprehension and spatial types, differ the process functional language from 
a purely functional one. The approach to programming is the same like in 
functional language (with function/process application). In addition, using the 
environment variables we can manipulate with states like in imperative languages. 
PFL also provides ways to profiling functional languages [5, 9, 10] and abstract 
type definitions [14, 15]. 



2.1 Computation Strategies 

Any parallel programming language must be based on certain assumptions about 
the underlying machine. The philosophy to parallel programming with functional 
languages has been to find the minimum necessary to write efficient parallel 
functional programs for the target machine. In particular it was desired to relieve 
the programmer from as much parallel organization as possible. The programmer 
must devise a parallel program and annotate it to indicate which expressions are 
suitable for parallel evaluation. Thus the programmer is responsible for addressing 
the question what to spark? but not where or when execute tasks. 

We can recognize these types of idealized parallelism types: 

− Farm parallelism 

o Farm parallelism paradigm consists of the entities master and multiple 
slaves. The master is responsible for decomposing the problem into small 
tasks (and distributes these tasks among a farm slave processes), as well as 
for gathering the partial results in order to produce the final result of the 
computation. The slave processes execute in a very simple cycle: get a 
message with the task, process the task, and send the result to the master. 
The computation terminates when all processes terminate. Usually, the 
communication takes place only between the master and the slaves. 

− Pipeline parallelism 

o This is a more fine–grained parallelism, which is based on a functional 
decomposition approach: the tasks of the algorithm, which are capable of 
concurrent operations, are identified and each processor executes a small 
part of the total algorithm. The pipeline is one of the simplest and most 
popular functional decomposition paradigms. Processes are organized in a 
pipeline – each process corresponds to a stage of the pipeline and is 
responsible for a particular task. The efficiency of this paradigm is directly 
dependent on the ability to balance the load across the stages of the 
pipeline. This paradigm is often used in data reduction or image processing 
applications.  

o The tasks (processes) are executed to solve different problems Pi, each 
processing the same processing the same type of data. Therefore this 
decomposition is sometimes called functional decomposition. In general, it 
is hardly decompose a problem to a sufficiently long pipeline of 
subproblems, which would utilize high number of processors. 

− Expansive parallelism 

o Expansive parallelism is method where a problem P is suggested to be 
solving set of n same problems recursively. For n=2 method is called 
divide–and–conquer. The divide and conquer approach is well known in 



sequential algorithm development. A problem is divided up into two or 
more subproblems. Each of these subproblems is solved independently and 
their results are combined to give the final result. We can identify three 
generic computational operations for divide and conquer: split, compute 
and join. The application is organized in a sort of virtual tree: some of the 
processes create subtasks and have combined the results of those to 
produce an aggregate result. 

− Massive parallelism 

o Massive parallelism problem P is solved at the same time on a set of data 
in parallel. The computation is based on independent tasks running on 
independent data sets also data sets may be overlapped. In a typical case 
this is fine grained parallelism, that may be utilized on SIMD architectures 
using data parallel programming model, but also on MIMD architectures 
using message passing programming model (in a more coarser manner, 
with the additional software overhead). 

Two popular methods for writing parallel programs are expressing parallelism 
using combinators (such as map and scan), and farm parallel programming 
(which is commonly supported by many available parallel systems). These 
methods offer complementary advantages and are used in implementation of 
distributed application of PFL. 

Parallel programming languages consist of two parts: 

− A set of parallel operations. For high level programming with farm 
parallelism, every parallel operation is expressed directly as a combinator. For 
massive parallelism, different mechanisms are used, depending on whether the 
parallel operation is purely local or uses interprocessor communication. 

− A coordination language, which expresses with parallel combinators, the 
coordination language could comprise the entire the entire functional language 
(e.g. Haskell), but it could also be restricted to functions written in a particular 
form. For conventional farm parallel programming method, the coordination 
language is C or Fortran (if we used MPI). 

The combinator method is well suited for abstract, high level specifications of 
algorithms. A family of functions, such as map, fold and scan, is used to express 
parallel computations. For example, a set of parallel local computations using the 
same function f can be expressed as par_map f xs, where the data structure of xs, 
are executed simultaneously in different processors. There is a rich set of 
mathematical laws relating the combinators, making this approach well suited for 
formal reasoning as well as a variety of optimisations and program 
transformations. 

The farm parallelism programming method is another popular model for 
programming parallel computers. Many available parallel systems support this 



style (SPMD – Single program, multiple data), and it offers relatively good 
program portability. The idea behind SPMD is simply that the programmer writes 
a program that will run on one processor, but the parallel operating system 
executes it concurently. The term SPMD is apt because the processors all use the 
same program, but they normaly have different data in their local memories. 

Both of these methods are used in implementation of distributed computation in 
PFL. 

2.2 Generator Architecture 

Generator for distributed implementation of PFL use existing implementation of 
PFL, but it extends to generate code to C++ with or without MPI support. In this 
way, we can measure effectivity of implementation PFL in distributed 
environment. Other aspect of implementation, like profiling, use existing base of 
PFL implementation [9]. 

As a base for generating distributed computation was choosen a C++ language for 
easily binding to MPI. As a mid–layer between pure C++ and MPI is used object–
oriented implementation of MPI called 11 [11]. It allows using full features of 
C++ – overloading operators, polymorphism, inheritance, abstract datatyping in 
easy way. We can use C++ extension of MPI–2, but in present time, there is only 
few implementation of MPI–2. 

2.2.1 Implementation of Basic Send/Receive Functions 

Primitive Send/Receive functions are defined explicitly. Primitive function type 
definition is placed in source code of PFL program: 

 primitive mpiSend :: Integer → List a → () 

and function definition in a file Primitives.ctp written in a C++ language: 

 static Object* mpiSend( Object* a, Object* b ){ 

 return (((new Constructor( "()", 0)) →  init())→  apply( 

 11_COMM_WORLD[*((Long*)a)].Send((Object*)b)) 

  ); 

} 

2.2.2 Implementation of Collective Operations 

Collective operations, like map, foldl, etc. are implemented using different 
method. 



Here is a generated code for par_map that is generated throught PFL generator 
with MPI support switch enabled (source code in PFL is par_map plusInteger 3 
lista, where lista is is generic list, contains integer number): 

class pfl_par_map : public Function{ 

virtual Object* expression( void ) { 

 Object *oro_19184575 = NULL, *oro_33409388 = NULL, *oMsg; 

 int nSize=11_COMM_WORLD.Size(); 

 int nRank=11_COMM_WORLD.Rank(); 

 oro_33409388 = ((Function*) ((Function*) new pfl_lista()) → init()) → 
expression(); 

 int iCount = oro_33409388→args→size() / nSize; 

 11_Request_array ra(iCount); 

 if( nRank == 0 ){ 

  for(int i=1; i<nSize; i++) 

   for(int j=(i-1)*iCount; j<oro_33409388→args→size(); j++){ 

    oMsg = ((Function*)oro_33409388→args→at(j)); 

    11_COMM_WORLD[i].Send( oMsg ); 

   } 

   oro_19184575 = ((Function*)new pfl_par_map())→init(); 

   for(i=1; i<nSize; i++) 

    for(int j=(i-1)*iCount; j<oro_33409388→args→size(); j++){ 

     11_COMM_WORLD[i].Recv( oMsg ); 

     ((Function*)oro_19184575)->apply( oMsg ); 

    } 

 } 

 else{ 

  Object* oMsg_19184575; 

  for(int i=0; i<iCount;i++){ 

   11_COMM_WORLD[0].Recv( oMsg ); 

   oMsg_19184575 = ((Function*) (( new pfl_plusInteger() ) → init() ) → 
apply( (new Long( 3 )) ) )) → apply( oMsg )) → expression(); 



   11_COMM_WORLD[0].Send( oMsg_19184575 ); 

  } 

  ra.Waitall(); 

  return oro_19184575; 

 } 

}; 

Conclusions 

In this paper a methodology for implementation a message–passing paradigm 
from a PFL specification was shown. Sections of this methodology are mechanical 
in nature, and could be supported by transformation tools. Using this 
methodology, we have derived small parallel programs from specifications. The 
message–passing model has been implemented using MPI; with this the derived 
programs have been executed on a group of workstations. A direction for future 
work is to improve effectivity of message–passing implemetation. For now, we 
use simple synchronisation mechanism (ra.Waitall()) for waiting to finish 
message–passing communications. Detailed description about particular part of 
implementation (object hierarchy, garbage collector, etc.) will be presented in 
further papers. 
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