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Abstract: The goal of this paper is to give a short survey of the results in sensitivity
analysis of the possibility distribution of the solution to possibilistic linear systems
and possibilistic linear programming problems

1 Introduction

Sensitivity analysis in fuzzy linear programming was first considered by Hamacher et
al [18], where a functional relationship between changes of parameters of the right-
hand side and those of the optimal value of the primal objective function was derived
for almost all conceivable cases. Fullér [8] showed that the solution to fuzzy linear
programs with symmetrical triangular fuzzy numbers is stable with respect to small
changes of centres of fuzzy numbers. Fedrizzi and Fullér [7] proved that the possibility
distribution of the objective function of a possibilistic linear program with continuous
fuzzy number parameters is stable under small perturbations of the parameters (in
contrast to classical linear programming, where a small error of measurement may
produce a large variation in the optimal value of the objective function).

Possibilisitic linear equality systems (PLES) are linear equality systems with fuzzy
coefficients, defined by the Zadeh’s extension principle. Kovács [13] showed that the
fuzzy solution to PLES with symmetric triangular fuzzy numbers is stable with respect
to small changes of centres of fuzzy parameters. The goal of this paper is to give a
short survey of the results in sensitivity analysis of the possibility distribution of the
solution of possibilistic linear systems and possibilistic linear programming problems.

First, we consider PLES with (Lipschitzian) fuzzy numbers and flexible linear pro-
grams, and illustrate the sensitivity of the fuzzy solution by several two-dimensional
PLES. Then we consider linear possibilistic programs and show that the possibility



distribution of their objective function remains stable under small changes in the mem-
bership functions of the fuzzy number coefficients.

A fuzzy number ã is a fuzzy set of the real line with a normal, (fuzzy) convex and
continuous membership function of bounded support. The family of fuzzy numbers
will be denoted by F . To distinguish a fuzzy number from a crisp (non-fuzzy) one,
the former will sometimes be denoted with a tilde ˜. If ã, b̃ ∈ F and λ ∈ R then
ã + b̃, ã − b̃, λã are defined by the Zadeh’s extension principle in the usual way. An
α-level set of a fuzzy number ã is a non-fuzzy set denoted by [ã]α. The truth value of
the assertion ”ã is equal to b̃”, which we write ã = b̃ is Poss(ã = b̃) defined as

Poss(ã = b̃) = sup{ã(t) ∧ b̃(t) | t ∈ R}.

If ã and b̃ are fuzzy numbers with [a]α = [a1(α), a2(α)] and [b]α = [b1(α), b2(α)]
then their Hausdorff distance is defined as [12]

D(ã, b̃) = sup
α∈[0,1]

max{|a1(α)− b1(α)|, |a2(α)− b2(α)|}.

i.e. D(ã, b̃) is the maximal distance between the α-level sets of ã and b̃.

A fuzzy set of the real line given by the membership function

ã(t) =


 1−

|a− t|
α

if |a− t| ≤ α,

0 otherwise,
(1)

Where α > 0 will be called a symmetrical triangular fuzzy number with center a ∈ R
and width 2α and we shall refer to it by the pair (a, α).

2 Possibilistic linear equality systems

Linear equality systems with fuzzy parameters and crisp variables defined by the ex-
tension principle are called possibilistic linear equality systems. This section focuses
on the problem of stability (with respect to perturbations of fuzzy parameters) of the
solution in these systems. A crisp (non-fuzzy) linear equality system can be written as

ai1x1 + · · ·+ ainxn = bi, i = 1, . . . ,m, (2)

or shortly, Ax = b where aij , bi and xj are real numbers. It is known that system
(2) generally belongs to the class of ill-posed problems, so a small perturbation of the
parameters aij and bi may cause a large deviation in the solution.

A possibilistic linear equality system is

ãi1x1 + · · ·+ ãinxn = b̃i, i = 1, . . . ,m, (3)

or shortly, Ãx = b̃, where ãij , b̃i ∈ F(R) are fuzzy quantities, x ∈ Rn, the operations
addition and multiplication by a real number of fuzzy quantities are defined by Zadeh’s
extension principle and the equation is understood in possibilistic sense.



We denote by µi(x) the degree of satisfaction of the i-th equation in (3) at the point
x ∈ Rn, i.e.

µi(x) = Pos(ãi1x1 + · · ·+ ãinxn = b̃i).

Following Bellman and Zadeh [1] the fuzzy solution (or the fuzzy set of feasible so-
lutions) of system (3) can be viewed as the intersection of the µi’s such that

µ(x) = min{µ1(x), . . . , µm(x)}. (4)

A measure of consistency for the possibilistic equality system (3) is defined as

µ∗ = sup{µ(x) | x ∈ Rn}. (5)

Let X∗ be the set of points x ∈ Rn for which µ(x) attains its maximum, if it exists.
That is

X∗ = {x∗ ∈ Rn | µ(x∗) = µ∗}
If X∗ 
= ∅ and x∗ ∈ X∗, then x∗ is called a maximizing (or best) solution of (3).

Let L > 0 be a real number. By F(L) we denote the set of all fuzzy numbers ã ∈ F
with membership function satisfying the Lipschitz condition with constant L , i.e.

|ã(t)− ã(t′)| ≤ L|t− t′|, ∀t, t′ ∈ R.

In many important cases the fuzzy parameters ãij , b̃i of the system (3) are not known
exactly and we have to work with their approximations ãδij , b̃

δ
i such that

max
i,j

D(ãij , ãδij) ≤ δ, max
i
D(b̃i, b̃δi ) ≤ δ, (6)

where δ ≥ 0 is a real number. Then we get the following system with perturbed fuzzy
parameters

ãδi1x1 + · · ·+ ãδinxn = b̃δi , i = 1, . . . ,m (7)

or shortly, Ãδx = b̃δ . In a similar manner we define the solution

µδ(x) = min{µδ1(x), . . . µδm(x)},

and the measure of consistency, µ∗(δ) = sup{µδ(x) | x ∈ Rn}, of perturbed system
(7), where

µδi (x) = Pos(ãδi1x1 + · · ·+ ãδinxn = b̃δi )

denotes the degree of satisfaction of the i-th equation at x ∈ Rn. Let X∗(δ) denote
the set of maximizing solutions of the perturbed system (7).

Kovács [13] showed that the fuzzy solution to system (3) with symmetric triangular
fuzzy numbers is a stable with respect to small changes of centres of fuzzy parameters.
Following Fullér [9] in the next theorem we establish a stability property (with respect
to perturbations (6)) of the solution of system (3).



Theorem 2.1. [9] Let L > 0 and ãij , ãδij , b̃i, b̃
δ
i ∈ F(L). If (6) holds, then

||µ− µδ||∞ = sup{|µ(x)− µδ(x)| ≤ Lδ | x ∈ Rn}, (8)

where µ(x) and µδ(x) are the (fuzzy) solutions to systems (3) and (7), respectively.

From (8) it follows that |µ∗ − µ∗(δ)| ≤ Lδ, where µ∗, µ∗(δ) are the measures of
consistency for the systems (3) and (7), respectively.

Consider now the possiblistic equality system (3) with fuzzy numbers of symmetric
triangular form

(ai1, α)x1 + · · ·+ (ain, α)xn = (bi, α), i = 1, . . . ,m,

or shortly,
(A,α)x = (b, α) (9)

Then following Kovács and Fullér [15] the fuzzy solution of (9) can be written in a
compact form

µ(x) =




1 if Ax = b

1−
||Ax− b||∞
α(|x|1 + 1)

if 0 < ||Ax− b||∞ ≤ α(|x|1 + 1)

0 if ||Ax− b||∞ > α(|x|1 + 1)

where
||Ax− b||∞ = max{|〈a1, x〉 − b1|, . . . , |〈am, x〉 − bm|}.

If
[µ]1 = {x ∈ Rn | µ(x) = 1} 
= ∅

then the set of maximizing solutions, X∗ = [µ]1, of (9) coincides with the solution
set, denoted by X∗∗, of the crisp system Ax = b. The stability theorem for system (9)
reads

Theorem 2.2. [13] If the relationships, D(Ã, Ãδ) = maxi,j |aij − aδij | ≤ δ and

D(b̃, b̃δ) = maxi |bi − bδi | ≤ δ hold, then

||µ− µδ||∞ = sup |µ(x)− µδ(x)| ≤ δ/α,

where µ(x) and µδ(x) are the fuzzy solutions to possibilistic equality systems (A,α)x =
(b, α), and (Aδ, α)x = (bδ, α), respectively.

Theorem 2.1 can be extended to possibilistic linear equality systems with (continuous)
fuzzy numbers.

Theorem 2.3. [10] Let ãij , ãδij , b̃i, b̃
δ
i ∈ F be fuzzy numbers. If (6) holds, then

||µ− µδ||∞ ≤ ω(δ),

where ω(δ) denotes the maximum of modulus of continuity of all fuzzy coefficients at
δ in (3) and (7).



In 1992 Kovács [16] showed a wide class of fuzzified systems that are well-posed
extensions of ill-posed linear equality and inequality systems.

Figure 1: The graph of fuzzy solution of system (10) with α = 0.4.

Consider the following two-dimensional possibilistic equality system

(1, α)x1 + (1, α)x2 = (0, α)
(1, α)x1 − (1, α)x2 = (0, α)

(10)

Then its fuzzy solution is

µ(x) =




1 if x = 0

τ2(x) if 0 < max{|x1 − x2|, |x1 + x2|} ≤ α(|x1|+ |x2|+ 1)

0 if max{|x1 − x2|, |x1 + x2|} > α(|x1|+ |x2|+ 1)

where

τ2(x) = 1−
max{|x1 − x2|, |x1 + x2|}

α(|x1|+ |x2|+ 1)
,

and the only maximizing solution of system (10) is x∗ = (0, 0). There is no problem
with stability of the solution even for the crisp system[

1 1
1 −1

] (
x1

x2

)
=

(
0
0

)

because det(A) 
= 0.

The fuzzy solution of possibilistic equality system

(1, α)x1 + (1, α)x2 = (0, α)
(1, α)x1 + (1, α)x2 = (0, α)

(11)



is

µ(x) =




1 if |x1 + x2| = 0

1−
|x1 + x2|

α(|x1|+ |x2|+ 1)
if 0 < |x1 + x2| ≤ α(|x1|+ |x2|+ 1)

0 if |x1 + x2| > α(|x1|+ |x2|+ 1)

and the set of its maximizing solutions is X∗ = {x ∈ R2 | x1 + x2 = 0}. In this case
we have X∗ = X∗∗ = {x ∈ R2 |Ax = b}.

Figure 2: The graph of fuzzy solution of system (11) with α = 0.4.

We might experience problems with the stability of the solution of the crisp system[
1 1
1 1

] (
x1

x2

)
=

(
0
0

)

because det(A) = 0. Really, the fuzzy solution of possibilistic equality system

(1, α)x1 + (1, α)x2 = (δ1, α)
(1, α)x1 + (1, α)x2 = (δ2, α)

(12)

where δ1 = 0.3 and δ2 = −0.3, is

µ(x) ={
τ1(x) if 0 < max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|} ≤ α(|x1|+ |x2|+ 1)

0 if max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|} > α(|x1|+ |x2|+ 1)



Figure 3: The graph of fuzzy solution of system (12) with α = 0.4.

where

τ1(x) = 1−
max{|x1 + x2 − 0.3|, |x1 + x2 + 0.3|}

α(|x1|+ |x2|+ 1)
and the set of the maximizing solutions of (12) is empty, and X∗∗ is also empty. Even
though the set of maximizing solution of systems (11) and (12) varies a lot under small
changes of the centers of fuzzy numbers of the right-hand side, δ1 and δ2, their fuzzy
solutions can be made arbitrary close to each other by letting

max{δ1, δ2}
α

to tend to zero.

3 Possibilistic linear programming

In this section we will consider certain possibilistic linear programming problems,
which have been introduced by Buckley [2] in 1988. In contrast to classical linear
programming (where a small error of measurement may produce a large variation in
the objective function), Fedrizzi and Fullér [7] showed that the possibility distribution
of the objective function of a possibilistic linear program with continuous fuzzy num-
ber parameters is stable under small perturbations of the parameters. A possibilistic
linear program is

max/min Z = x1c̃1 + · · ·+ xnc̃n,

subject to x1ãi1 + · · ·+ xnãin ∗ b̃i,
1 ≤ i ≤ m, x ≥ 0,

(13)



where ãij , b̃i, c̃j are fuzzy numbers, x = (x1, . . . , xn) is a vector of (nonfuzzy)
decision variables, and ∗ denotes <, ≤, =, ≥ or > for each i.

We will assume that all fuzzy numbers ãij , b̃i and c̃j are non-interactive. Non-
interactivity means that we can find the joint possibility distribution of all the fuzzy
variables by calculating the min-intersection of their possibility distributions. Follow-
ing Buckley [2], we define Pos[Z = z], the possibility distribution of the objective
function Z. We first specify the possibility that x satisfies the i-th constraints. Let

Π(ai, bi) = min{ãi1(ai1), . . . , ãin(ain), b̃i(bi},

where ai = (ai1, . . . , ain), which is the joint distribution of ãij , j = 1, . . . , n, and b̃i.
Then

Pos[x ∈ Fi] = sup
ai,bi

{Π(ai, bi) | ai1x1 + · · ·+ ainxn ∗ bi },

which is the possibility that x is feasible with respect to the i-th constraint. Therefore,
for x ≥ 0,

Pos[x ∈ F ] = min
1≤i≤m

Pos[x ∈ Fi],

which is the possibility that x is feasible. We next construct Pos[Z = z|x] which is
the conditional possibility that Z equals z given x. The joint distribution of the c̃j is

Π(c) = min{c̃1(c1), . . . , c̃n(cn)}

where c = (c1, . . . , cn). Therefore,

Pos[Z = z|x] = sup
c
{Π(c)|c1x1 + · · ·+ cnxn = z}.

Finally, applying Bellman and Zadeh’s method for fuzzy decision making [1], the
possibility distribution of the objective function is defined as

Pos[Z = z] = sup
x≥0

min{Pos[Z = z|x],Pos[x ∈ F ]}.

It should be noted that Buckley [3] showed that the solution to an appropriate linear
program gives the correct z values in Pos[Z = z] = α for each α ∈ [0, 1].

An important question is the influence of the perturbations of the fuzzy parameters to
the possibility distribution of the objective function. We will assume that there is a
collection of fuzzy parameters ãδij , b̃

δ
i and c̃δj available with the property

D(Ã, Ãδ) ≤ δ, D(b̃, b̃δ) ≤ δ, D(c̃, c̃δ) ≤ δ. (14)

Then we have to solve the following perturbed problem:

max/min Zδ = x1c̃
δ
1 + · · ·+ xnc̃

δ
n

subject to x1ã
δ
i1 + · · ·+ xnã

δ
in ∗ b̃δi ,

1 ≤ i ≤ m, x ≥ 0.

(15)



Let us denote by Pos[x ∈ Fδi ] the possibility that x is feasible with respect to the
i-th constraint in (15). Then the possibility distribution of the objective function Zδ is
defined as follows:

Pos[Zδ = z] = sup
x≥0

(min{Pos[Zδ = z | x],Pos[x ∈ Fδ]}).

The next theorem shows a stability property (with respect to perturbations (14) of the
possibility dostribution of the objective function of the possibilistic linear program-
ming problems (13) and (15).

Theorem 3.1. [7] Let δ ≥ 0 be a real number and let ãij , b̃i, ãδij , c̃j , c̃
δ
j be (continuous)

fuzzy numbers. If (14) hold, then

sup
z∈R
| Pos[Zδ = z]− Pos[Z = z] |≤ ω(δ) (16)

where where ω(δ) denotes the maximum of modulus of continuity of all fuzzy coeffi-
cients at δ in problems (13) and (15).

From (16) follows that supz |Pos[Zδ = z]−Pos[Z = z]| → 0 as δ → 0, which means
the stability of the possiibility distribution of the objective function with respect to
perturbations (14). It is easy to see that in the case of non-continuous fuzzy parame-
ters the possibility distribution of the objective function may be unstable under small
changes of the parameters.

As an example, consider the following possibilistic linear program

max/min c̃x

subject to ãx ≤ b̃,
x ≥ 0.

(17)

where ã = (1, 1), b̃ = (2, 1) and c̃ = (3, 1) are fuzzy numbers of symmetric triangular
form. Here x is one-dimensional (n = 1) and there is only one constraint (m = 1).
We find

Pos[x ∈ F ] =




1 if x ≤ 2,

3
x+ 1

if x > 2.

and

Pos[Z = z|x] = Pos[c̃x = z] =




4− z/x if z/x ∈ [3, 4],

z/x− 2 if z/x ∈ [2, 3],

0 otherwise,

for x 
= 0, and

Pos[Z = z|0] = Pos[0× c̃ = z] =

{
1 if z = 0,

0 otherwise.



Figure 4: The graph of Pos[Z = z|x] for z = 8.

Therefore,

Pos[Z = z] = sup
x≥0

min

{
3

x+ 1
, 1−

∣∣∣∣∣ zx− 3

∣∣∣∣∣
}

if z > 6 and Pos[Z = z] = 1 if 0 ≤ z ≤ 6. That is,

Pos[Z = z] =

{
1 if 0 ≤ z ≤ 6,

v(z) otherwise.

where

v(z) =
24

z + 7 +
√
z2 + 14z + 1

.

This result can be understood if we consider the crisp LP problem with the centers of
the fuzzy numbers

max /min 3x; subject to x ≤ 2, x ≥ 0.

Figure 5: z × Pos[Z = z] tends to 12 as z →∞.

All negative values as possible solutions to the crisp problem are excluded by the
constraint x ≥ 0, and the possible values of the objective function are in the interval
[0, 6]. However, due to the fuzziness in (17), the objective function can take bigger



values than six with a non-zero degrees of possibility. Therefore to find an optimal
value of the problem

(3, 1)x→ max
subject to (1, 1)x ≤ (2, 1),

x ≥ 0.
(18)

requires a determination a trade-off between the increasing value of z and the decreas-
ing value of Pos[Z = z].

If we take the product operator for modeling the trade-offs then we see that the result-
ing problem

z × Pos[Z = z] =
24z

z + 7 +
√
z2 + 14z + 1

→ max

subject to z ≥ 0.

does not have a finite solution, because the function z×Pos[Z = z] is strictly increas-
ing if z ≥ 0.

In 1994 Fullér and Fedrizzi [11], showed that the possibility distribution of the objec-
tives of an multiobjective possibilistic linear program with (continuous) fuzzy number
coefficients is stable under small changes in the membership function of the fuzzy
parameters. Finally, in 1996 Canestrelli et al [4] proved that possibilistic quadratic
programs with crisp decision variables and continuous fuzzy number coefficients are
also well-posed, i.e. small changes of the membership function of the coefficients may
cause only a small deviation in the possibility distribution of the objective function.
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