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Abstract:One of the most critical steps in the process of digital image analysis is 
segmentation: separation of an image into regions that have strong correlation 
with objects of the real world. Segmentation of fiber like objects is a key problem 
in several image processing application. This paper overviews deformable 
models, as well as segmentation techniques employed for fiber like objects and 
propose an algorithm for segmentation of endoplasmatic reticulum using 
deformable models with automatic initialization. 
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1 Introduction 

Image segmentation is one of the most important steps leading to the analysis of 
image data; its main goal is to divide an image into parts that have a strong 
correlation with objects of the real world. Segmented images are now used in a 
multitude of different fields, such as industrial, distant reading, biomedical or 
physical applications. Image segmentation remains a difficult task, however, due 
to both the variability of object shapes and the variation in image quality. 
Processed images are often corrupted by noise or sampling artifacts, which can 
cause considerable difficulties when applying classical segmentation techniques 
such as edge detection and thresholding. As a result, these techniques either fail 
completely or require some kind of postprocessing step to remove invalid object 
boundaries in the segmentation result.  



To address these difficulties, deformable models have been extensively studied 
and widely used with promising results. Deformable models are curves or surfaces 
defined within an image domain that can move a) under the influence of internal 
forces, which are defined within the curve or surface itself, and b) external forces, 
which are computed from the image data. The internal forces are designed to keep 
the model smooth during deformation. The external forces are defined to move the 
model toward an object boundary or other desired features within an image. By 
constraining extracted boundaries to be smooth and incorporating other prior 
information about the object shape, deformable models offer robustness to both 
image noise and boundary gaps. 

Deformable models have become popular since publishing the work [4] in the late 
eighties and from that time they have grown to be one of the most active research 
areas in image segmentation. Various names, such as snake, active contours or 
surfaces, balloons, and deformable contours or surfaces have been used in the 
literature to refer deformable models. 

Segmentation of fiber like structures is a key problem in several image processing 
and analysis applications. Examples include the detection of roads and valleys in 
satellite images, visualization of DNA chains using atomic force microscopy, the 
extraction of blood vessels from retinal, magnetic resonance, computed 
tomography, or X-ray angiography images for the purpose of quantification or 
visualization, and the tracing of neurons in three dimensional (3D) confocal 
microscopy images for histological studies. 

The concept of fiber like objects is used intuitively in this paper. They represent a 
few pixel wide elongated structures, with a circular cross section. They are often 
ambiguous, such as branching, touching or crossing structures, objects with 
crooked traces. These defects disable design of fully automatic methods, which 
leads to using rudimentary techniques, such as manual delineating of objects, 
which is extremely time consuming process and moreover, their results highly 
depend on the human operator. 

The goal of this paper is to give insight into deformable models and segmentation 
of fiber like objects, as well as to publish our experiences using active contours in 
a real application. The paper is organized as follows: sections 2 and 3 describe 
deformable models and one of their basic formulations, respectively basic 
segmentation methods of fiber like objects. In section 4 we introduce an 
application area: segmentation of endoplasmatic reticulum, results are presented in 
section 5. Finally, we draw conclusions and describe future work. 



2 Deformable models 

There is described one of the basic formulations for parametric deformable models 
[4, 14]: an energy minimizing approach in this section.  

Energy minimizing formulation is based on finding a parametrized curve that 
minimizes the weighted sum of internal energy and potential energy. The internal 
energy specifies the tension or the smoothness of the contour. The potential 
energy is defined over the image domain and typically possesses local minima at 
the image intensity edges occuring at objects boundaries or ridges. 

Mathematically, a deformable contour is a curve ]1,0[)),(),(()( ∈= ssYsXsX , 
which moves through the spatial domain of an image to minimize the following 
energy functional: 
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The first term is the internal energy functional and is defined to be  
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The first-order derivative discourages stretching and makes the model behave like 
an elastic string. The second-order derivative discourages bending and makes the 
model behave like a rigid rod. The weighting parameters )(sα and )(sβ can be 
used to control the strength of the model’s tension and rigidity, respectively.   

The second term is the potential energy functional and is computed by integrating 
a potential energy function  as the integral of the potential energy function 
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The potential energy function is derived from the image data and takes smaller 
values at object boundaries as well as other features of interest. Given a grey-level 
image ),( yxI  viewed as a function of continuous position variables ),( yx , a 
typical potential energy function designed to lead a deformable contour toward 
step edges is  

[ ] 2),(*),(),( yxIyxGwyxP e σ∇−= ,  (2.2) 



where ew  is a positive weighting parameter, ),( yxGσ  is a two dimensional 
Gaussian function with standard deviation σ , ∇  is the gradient operator and * is 
the 2D image convolution operator. 

3 Segmentation of fiber like objects 
There is a wide range of segmentation techniques that were applied for fiber like 
objects. They can be classified according to different criteria, e.g. 
automatic/semiautomatic, the amount of a priori knowledge used by the technique 
etc. These segmentation methods are divided according to their basic principles in 
this paper. The given categorization is not the only possible one and individual 
methods can be classified into more than one class [5]. 

Pattern recognition techniques deal with the automatic detection or classification 
of objects or features. Humans are very well adapted to carry out such tasks. Some 
of these techniques are the adaptation of human ability to the computer systems. 
Pattern recognition techniques may be divided into next classes: multi-scale 
approaches, skeleton-based approaches (fig.1), region growing approaches, ridge-
based approaches [1] (fig.2), differential geometry-base approaches, matching 
filter approaches [12], mathematical morphology schemes, e.g. top hat or 
watershed segmentation.  

Model based approaches apply explicit fiber models to extract the scene. The 
following methods belong into this class: deformable models (both parametric and 
geometric ones), parametric models, where objects of interest are defined 
parametrically, e.g. as a set of overlapping ellipsoids and template matching [11]. 
Parametric deformable models for segmentation of fiber like objects are described 
in the next section. 

Tracking based approaches apply local operators at places known to be an objects 
and that belong to an object and track it. Tracking starts from an initial point and 
detects either central line or boundaries by analyzing the pixel orthogonal to the 
tracking direction.  

Artificial intelligence based approaches utilize knowledge to guide the 
segmentation process and to delineate individual structures. Different types of 
knowledge are employed in different systems from various sources. One 
knowledge source is the properties of the image acquisition technique. These 
systems use low level image processing algorithms, e.g. thresholding and thinning 
and high level knowledge is used for controlling the process. These methods are 
accurate, however their computational complexity is much larger than other 
methods [10].  

Neural networks are motivated by biological learning and widely used in pattern 
recognition. They were employed also in segmentation of fiber like objects [13]. 



(a)    (b)   (c) 

Fig1. Example of a skeletonization process. (a) atomic force image of a DNA
segment, (b) binary image obtained by thresholding, (c) skeleton 

(a) (b) 

Fig2. (a) atomic force image of DNA, (b) the corresponding three dimensional
intensity height map 

 

 

 

 

 

 

3.1 Parametric deformable models in segmentation of fiber like 
objects 

Different modifications of parametric deformable models [4] are often used in 
segmentation of fiber like objects. Modifications that allow their application in 
this field mainly deal with topological changes [8], modifying the internal energy, 
incorporating a priori knowledge into the models and effective initializing of the 
model. 

McInerney and Terzopoulos describe affine cell decomposition-based (ACD) 
deformable surface and show the potential use of these models in extraction of 
complex structures from medical image volumes. Topologically deformable ACD-
based models, called T-snakes and T-surfaces are parametric models that embed 
deformable models in an ACD framework to extract very complex structures. 2D 



deformable models known as topologically adaptable snakes, T-snakes are 
introduced in [8]. Combinating the ACD framework with deformable models 
allows to overcome the limitations of classical models while keeping the 
traditional properties. A T-surface is defined as a closed oriented triangular mesh. 
The vertices of the triangles act as a dynamic particle system where the particles 
are connected by discrete springs. As the T-surface moves under the influence of 
internal and external energy forces, the model is reparametrized with a new set of 
triangles and nodes from the intersection points of the model with the superposed 
grid. Reparametrization of the model at every step allows the model topologically 
transfer and adapt itself to more complex structures.  

Different types of deformable models were implemented in segmentation of fiber 
like objects. In [9] three dimensional deformable model is used for reconstruction 
of three dimensional paths in angiography. In [3] is described employing of 
deformable models for detecting rivers in high resolution satellite images.  

4 Segmentation of endoplasmatic reticulum 

Images of endoplasmatic reticulum of tobacco cells were segmented to extract 
fiber like structures. The proposed algorithm consists of two steps: automatic 
initialization provides a reasonable input for the active contour deformation. 

4.1 Initialization 

Fibrous structures in 2D images were enhanced by scale-space ridge detection [6]. 
The images were smoothed by Gaussian filter with kernel  
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with values of t equal to 2, 2√2, 4 pixels. Normalized higher eigenvalue of matrix 
of second derivatives of the image at each degree of smoothing t was calculated by 
formula 
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The maximal value from the three resulting images was filtered by morphological 
opening using the 5 pixel structural element and segmented by thresholding. 
Voronoi mosaic of the boundary points was constructed using Euclidean distance 
transform algorithm by [2] and skeleton was generated after [10] from boundaries 



between the mosaic cells, and pruned by omitting the branches generated by 
couples of points whose geodetical distance along the boundary was less then 10 
pixels. 

4.2 Active contour implementation 
A contour is represented as a list of vertices with x , y  co-ordinates. The image 
component of the energy term is calculated for the image pixels corresponding to 
the contour vertices. Each vertex in this list may be considered as being connected 
by an edge to the next vertex in the list [3].  
An important component of contour models is the curvature term in the energy 
function. We used the actual angles (in degrees) of the contour segments, and the 
change in this angle at each vertex was used to determine the curvature energy.  
Equation (4.1) gives the formula used for the angle created by the line segment 
connecting two points ( 11, yx  and 22 , yx ). Note that taking the absolute value of 
the difference between the co-ordinates results in a measure for θ  that is in the 
first quadrant if the angle is being measured from standard positions (the positive 
x  axis). Thus the angles must be adjusted accordingly dependent on which 
quadrant the line segment will fall in if the first point is located at the origin of the 
coordinate system  
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Each vertex has a preceding and subsequent edge segment for which and angle 
can be calculated (fig.3). The curvature energy is based on the differences between 
these angles. Due to the manner in which angles are handled, this difference 
cannot be calculated by simple subtraction of the edge angles. To solve this 
problem, we used the following technique in calculating the curvature. For two 
angles a  and b , let },max{ bam =  and },min{ bas = , then the difference 
between a  and b  can be calculated by 

}360,min{ smsm +−−=∆θ . 
This angular difference is determined once again for each position in a 
neighborhood around the current vertex, and these angles are normalized 
according to the following equation: 

}max{ θ
θ
∆

∆=curvE  

where, curvE  is the curvature energy, θ∆  is the curvature at the vertex position 
under evaluation, and }max{ θ∆  is the maximum curvature among the neighbors. 
The image score is based on the edge strength at the pixel underlying the vertex 
being evaluated, with low scores representing high intensities. A variable sized 
neighborhood (set interactively by the user) around each vertex is analyzed to 
determine the new position of each vertex. Image scores are calculated for each of 



the current vertex’s immediate neighbors and these values are subsequently 
translated into energy scores in the <0.0;1.0> range by normalizing each image 
score by the range of scored within the vertex neighborhood as follows: 
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where imgE  is the image energy score, I  is the current image score for the pixel 
under evaluation, min , is the minimum image score in the neighborhood under 
evaluation, and max , is the maximum image score in the neighborhood under 
evaluation.  
Within a search neighborhood this method yields a set of scores ranging from 
<0.0;1.0> for each vertex. However, this same range of scores would be set of 
each neighborhood, even if there is little variation in image values within the 
neighborhood, such as might be the case where no ridge is present. Therefore, if 

minmax <− 5 , then the value for min  is set to 5−max , to ensure that low 
energy scores are not assigned to areas where there is little variation in image 
intensity.  
The continuity energy is minimized by maintaining a regular spacing of vertices 
along the length of the contour. This is important, as the image energy will cause 
vertices to accumulate along high ridges and leave poor representation in regions 
of the image where ridges are not so high. As with the image energy score, an 
initial continuity measure is made for each neighbor of a current vertex, and is 
then normalized to the <0.0;1.0> range based on the range of values in the 
neighborhood. The initial score is calculated by 

cpavgcont vvdS −−= ,    (4.2) 

where contS , is the initial continuity score, avgd , is the average distance between 
vertices on the contour, pv  is the previous vertex, cv  is the current vertex, 

cp vv −  is the Euclidean distance between pv  and cv .  

The value is normalized by: 

{ }cont
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where contE  is the continuity energy score, contS  is the current continuity score 
for the vertex neighbor under evaluation as calculated in equation (4.2), 

{ }contSmax  is the maximum value for contS  among current vertex’s neighbors.  
The total vertex energy is determined by calculating the weighted average of the 
three component scores (image, continuity, and curvature). 
The contour deformation stage attempts to find a configuration of the contour 
which minimized the totals of all three energy terms (image, continuity, curvature) 
for the entire contour. We applied the Greedy Algorithm, described in [14], which 
determined where the current vertex could be repositioned to minimize the total 
energy. Although the positions of adjacent contour vertices are used in calculating 



(a)    (b)   (c) 

Fig.4 Repositioning a vertex using the Greedy Algorithm (a) original position,
(b)energy values for each neighbor (c) repositioned vertex  

curvature energy, the influence of the decision regarding current vertex position 
on the energies of adjacent vertices is not considered. The algorithm calculates the 
energy score for each image position within a neighborhood surrounding the 
current vertex, and moves that vertex to the position with the lowest energy score 
(fig.4). 
 
 
 
 
 
 
 
 
 
 

 
5 Experiments 
The described technique was implemented in the Microsoft Visual C++ 6.0 
programming environment. After initial experimentation the parameters were 
fixed to: σ =1.3 for Gaussian smoothing, weighting parameter for the external 
force = 0.75, weighting parameter for the curvature term = 0.125, weighting 
parameter for the continuity term = 0.125, neighborhood window size of 
5x5pixels. Accuracy was evaluated visually. Fig.5 gives an impression of the 
results of the initialization process (b), (c) and the active contour deformation 
process (d). 

Fig.3 Calculating the curvature in vact, where the preceding edge segment is
vactvprev the subsequent edge segment is vnextvact. 



(a)     (b) 

        (c)             (d) 

Fig5: (a) fluorescence image of endoplasmatic reticulum of GFP transformed
tobacco cell, (b) thresholded image enhanced by scale-space ridge detection 
filter, (c) skeletonized image, (d) Gaussian smoothed image with skeleton 
regularized by active contour model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
Deformable models are a powerful tool for image segmentation and boundary 
extraction, particularly in corrupted images or in objects that contain boundary 
gaps. However, they require user interaction or interaction with some higher-level 
image understanding process. This interaction must specify an approximate shape 
and starting position for the model somewhere near the desired contour. 
Moreover, the model may need other accessory information, such as setting a) 
parameters of the energy functional, defined by equations (2.1) and (2.2) or  b) 
size of the neighborhood defined in the section 4.2. In this work we used  
experimentally set constant values. Future work in this field assumes designing a 
more sophisticated method for adjustment of these values, which are not 
necessarily  be the same for different applications. 



 
 
 
 
 
 
Results were evaluated visually. Although these were promising, for further 
testing it will be necessary to develop an accurate model of these biological 
structures, similar to that presented in [7]. 

Another future work would be enhancing the automatic initialization process and 
active contour implementation into three dimensions. Such an application, 
illustrated in the fig.6, is a segmentation of capillaries from rat brain white matter, 
and its subsequent qualitative and quantitative analysis. 
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(a) (b) 

Fig6. (a) original white matter sample, (b) cylindrical model of manually traced
microvessels



References 

 [1] S.R. Aylward, “Initialization, noise, singularities, and scale in height 
ridge traversal for tubular object centerline extraction,” IEEE Trans. Med. 
Imag., vol.21, no.2, pp.61-75, 2002. 

[2] H. Breu, J. Gil, D. Kirkpatrick, M. Werman, “Linear Time Euclidean 
Distance Transform Algorithms,” IEEE Trans. Patt. Anal. Mach. Intell., 
vol.17 , no.5, Pages: 529-533, 1995. 

[3]  C.R. Dillabaugh, K.O. Niemann, and D. Richardson, “Semi-automated 
extraction of rivers from digital imagery,” GeoInformatica, vol.6, no.3, 
pp.263-284, 2002. 

[4]  M. Kass, A.Witkin, and D. Terzopoulos, “Snakes: active contour 
models,“ Int´l J. Comp. Vis., vol.1, no.4, pp. 321-331, 1987. 

[5]  C. Kirbas and F.K.H. Quek, “Vessel extraction techniques and 
algorithms: a survey,”, in Proc. IEEE Symposium on Bioinformatics and 
Bioengineering, 238, 2003. 

[6]  T. Lindeberg, “Edge detection and ridge detection with automatic scale 
selection,” Int’l J. Comp. Vis., vol.30, no.2, 117-156, 1998. 

[7] J. Marek, E. Demjénová, Z. Tomori, J. Janáček, I. Zolotová, F. Valle, M. 
Favre, G. Dietler, „Interactive measurement and characterization of DNA 
confirmation by analysis of AFM image“, accepted in Cytometry 

[8]  T. McInerney, and D. Terzopoulos, “T-snakes: Topology adaptive 
snakes,” Med. Imag. Anal., vol.4, no.2, pp.73-91, 2000. 

[9]  C. Molina, G. Prause, P. Radeva, and M. Sonka, “3-d catheter path 
reconstruction from biplane angiograms,“ in SPIE, vol.3338, pp.504-512, 
1998. 

[10] R. Ogniewicz, and M. Ilg, “Voronoi Skeletons: Theory and 
Applications,” Proc. CVPR'92, Champaign, Illinois, 63-69, June 1992 

[11]  U. Rost, H. Munkel, and C.-E. Liedtke, “A knowledge based system for 
the configuration of image processing algorithms,” Fachtagung 
Informations und Mikrosystem Technik, March, 1998. 

[12]  Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. 
Gerig, and R. Kikinis, “3d multis-scale line filter for segmentation and 
visualization of curvilinear structures in medical images,“ IEEE Medical 
Image Analysis, vol.2, pp.143-168, June, 1998. 

[13]  S. Shiffman, G.D. Rubin, and S. Napel, “Semiautomated editing of 
computed tomography sections for visualization of vasculature”, 
vol.2707, SPIE, 1996. 

[14]  D.J. Williams and M. Shah, “A fast algorithm for active contours and 
curvature estimation,” CVGIP:Imag. Under., vol.55, no.1, pp.14-26, 
1992. 

[15]  C. Xu, D.L. Pham, J.L. Prince, “Medical image segmentation using 
deformable models,“ Handbook of Medical Imaging, vol.2, Medical 
Image Processing and Analysis, pp.129-174, 2000. 


