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Abstract: In this paper we summarize some of our results on aggregation of individ-
ual fuzzy preferences. We focus on aggregation functions that preserve some types
of transitivity, by giving complete characterization and representation of two main
aggregation classes. These are closely related to the weighted maximum and min-
imum operations. We also establish full characterization of these weighted forms
via stability properties of the operations. These properties are expressed by func-
tional equations. Solutions of these equations correspond exactly to the studied
operations.
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1 Introduction

Aggregation of binary preference relations is an important and challenging
mathematical problem in such applied areas as operations research, social
choice, group choice, multiple-criteria decision-making, etc. Perhaps, in its
purest form this problem can be formulated in terms of group choice theory.
Suppose A is a finite set of alternatives and < = 〈R1, . . . , Rn〉 is an ordered
n-tuple of binary relations on A. Elements of < are regarded as individual
preferences and < is called a profile of individual preferences on the set A.
For a given A, an aggregation rule M assigns a group preference R to each
profile < of individual preferences on A (very often it is assumed that n > 2):
R = M(R1, . . . , Rn).

Depending on the application area, various restrictions are imposed on R.
In the framework of group and social choice theories, the Pareto principle is
considered to be a fundamental consistency property of any aggregation rule.
According to [7], “... no one objects to the Pareto principle; on the contrary,
procedures which violate it are considered unsatisfactory.” In set-theoretic
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terms the Pareto principle can be written as

n⋂

i=1

Ri ⊆ R ⊆
n⋃

i=1

Ri (1)

for any profile 〈R1, . . . , Rn〉 of individual preferences.
We denote Rmin =

⋂
i Ri and Rmax =

⋂
i Ri. These binary relations

are two extreme cases of aggregation rules satisfying the Pareto principle.
The first one is very conservative: aRminb if and only if aRib for all i ∈
{1, 2, . . . , n}. The second is very liberal: aRmaxb if and only if aRib for some
i ∈ {1, 2, . . . , n}. A reasonable aggregation rule should produce R somewhere
“in the middle” [7].

Exactly the same can be said when the individual preferences are binary
fuzzy relations on A. Moreover, there are some almost indispensable proper-
ties of preferences (like diverse forms of transitivity, completeness, etc) which
are usually required.

Therefore, in the sequel we consider strongly complete and negatively
transitive fuzzy preferences. We would like to find an aggregation rule that
preserves these two properties. That is, let R1, . . . , Rm be strongly complete
and negatively transitive binary fuzzy relations on A. Find the class of all
aggregation operators M : [0, 1]m → [0, 1] such that R = M(R1, . . . , Rm) is
a strongly complete and negatively transitive binary fuzzy relation on A. We
completely characterize this class, which turns out to be a generalization of
the class of weighted maximum operators defined and investigated by Dubois
and Prade [2]. The complete characterization of weighted maximum and min-
imum operations is established then. The results are obtained via stability
properties of the operations.

2 Transitivity preserving aggregations

Transitivity of preferences expresses a kind of consistency. Extensions of clas-
sical forms for fuzzy relations, together with some other properties, can be
formulated as follows.

Definition 1. A binary fuzzy relation R on A is called antisymmetric if
min(R(a, b), R(b, a)) = 0 for all a, b ∈ A; transitive if

R(a, b) ≥ min(R(a, c), R(c, b))

holds for all a, b, c ∈ A.
A binary fuzzy relation R on A is called strongly complete if we have for

all a, b ∈ A that max(R(a, b), R(b, a)) = 1 ; negatively transitive if

R(a, b) ≤ max(R(a, c), R(c, b))

holds for all a, b, c ∈ A.



Let R1, . . . , Rm be strongly complete and negatively transitive binary
fuzzy relations on A. We would like to find an aggregation rule M : [0, 1]m →
[0, 1] such that R = M(R1, . . . , Rm) is a strongly complete and negatively
transitive binary fuzzy relation on A.

One possible class of aggregation rules is given by

M(R1, . . . , Rm) = max
j∈1,m

hj(Rj),

where hj are non decreasing functions from [0, 1] to [0, 1], 1,m is the index
set {1, . . . ,m} and hj(1) = 1 for some j ∈ 1,m, hj(0) = 0 for all j ∈ 1,m.

The completeness of R directly follows from the property that hj(1) =
1 for some j. We also have that M is monotonic and M(0, . . . , 0) = 0,
M(1, . . . , 1) = 1.

The following theorem shows that the above class is the most general one
with preserving the two properties.

Theorem 1 ([5]). Suppose that R1, . . . , Rm are strongly complete and nega-
tively transitive binary fuzzy relations on A. Then the aggregated relation R
defined by a function M : [0, 1]m → [0, 1] as

R = M(R1, . . . , Rm)

is a strongly complete and negatively transitive binary fuzzy relation on A if
and only if

M(R1, . . . , Rm) = max
j∈1,m

hj(Rj), (2)

where hj are non decreasing functions from [0, 1] to [0, 1] with hj(1) = 1, for
some j ∈ 1, m and hj(0) = 0, for all j ∈ 1,m.

An important particular case corresponds to the weighted maximum we
will study in the sequel. In that case we have

hj(Rj) = min(ωj , Rj) with max
j∈1,m

ωj = 1.

This theorem and the related proof (see [5] for more details and proofs)
are very close to those obtained by Leclerc [6] in the framework of consensus
functions on transitively valued relations.

The dual theorem for antisymmetric and transitive relations can be im-
mediately deduced.

Theorem 2 ([5]). Suppose that R1, . . . , Rm are antisymmetric and transitive
binary fuzzy relations. The aggregated relation R defined as

R = M ′(R1, . . . , Rm)

is an antisymmetric and transitive binary fuzzy relation if and only if

R = min
j∈J

fj(Rj) (3)



where fj are non decreasing function from [0, 1] to [0, 1] with fj(0) = 0, for
some j ∈ 1, m and hj(1) = 1, for all j ∈ 1,m.

An important particular case corresponds to the weighted minimum we
will study in the sequel. In that case we have

fj(Rj) = max(ωj , Rj) with min
j∈1,m

ωj = 0.

3 Weighted maximum and minimum

Using the concept of possibility and necessity of fuzzy events [8,1], one can
evaluate the possibility that a relevant goal is attained, and the necessity that
all the relevant goals are attained by the help of the following formulas (see
[2] for more details), where x1, x2, . . . , xm ∈ [0, 1] for m ∈ N:

max
i=1,m

{min(wi, xi)}, wi ∈ [0, 1], max
i=1,m

wi = 1 (weighted maximum) (4)

and

min
i=1,m

{max(wi, xi)}, wi ∈ [0, 1], min
i=1,m

wi = 0 (weighted minimum). (5)

The analogy between the weighted arithmetic mean and the weighted
maximum is obvious: product corresponds to minimum, sum does to maxi-
mum. It is emphasized in [2] that weighted maximum and minimum opera-
tors can be calculated as medians, i.e., the qualitative counterparts of means.
More formally, the following result is true (only the weighted maximum is
recalled).

Proposition 1 ([2]). Let (a1, . . . , am) ∈ [0, 1]m and (b1, . . . , bm) ∈ [0, 1]m be
such that a1 ≤ a2 ≤ . . . ≤ am and 1 = b1 ≥ b2 ≥ . . . ≥ bm. Then

max
i=1,m

{min(ai, bi)} = median(a1, . . . , am, b2, . . . , bm).

It is easy to see that weighted maximum satisfies idempotency and monotonic-
ity. Moreover, it fulfils also (with T (m) = M (m))

• stability for maximum (SMAX):

M (m)(x1 ∨ t1, . . . , xm ∨ tm) = M (m)(x1, . . . , xm) ∨ T (m)(t1, . . . , tm)

for all (x1, . . . , xm) ∈ [0, 1]m, (t1, . . . , tm) ∈ [0, 1]m.
• stability for minimum with the same unit (SMINU):

M (m)(r ∧ x1, . . . , r ∧ xm) = r ∧M (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ [0, 1]m, r ∈ [0, 1].



In a sense, the converse is also true, as we state in the following theorem.

Theorem 3 ([5]). Suppose that M is a nondecreasing function from [0, 1]m

to [0, 1] such that M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1. Then M satisfies
SMAX and SMINU if and only if there exist weights w1, . . . , wm ≥ 0 with
maxwi = 1 such that

M(x1, . . . , xm) = max
i=1,...,m

{min(wi, xi)}.

By duality, we can introduce the corresponding stability conditions in the
case of the weighted minimum as follows:

• stability for minimum (SMIN):

M (m)(x1 ∧ t1, . . . , xm ∧ tm) = M (m)(x1, . . . , xm) ∧ T (m)(t1, . . . , tm)

for all (x1, . . . , xm) ∈ [0, 1]m, (t1, . . . , tm) ∈ [0, 1]m.
• stability for maximum with the same unit (SMAXU):

M (m)(r ∨ x1, . . . , r ∨ xm) = r ∨M (m)(x1, . . . , xm)

for all (x1, . . . , xm) ∈ [0, 1]m, r ∈ [0, 1].

Obviously, the weighted minimum (5) satisfies both conditions. We state
that the converse is also true in the following sense.

Theorem 4 ([5]). Suppose that M is a nondecreasing function from [0, 1]m

to [0, 1] such that M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1. Then M satisfies
SMIN and SMAXU if and only if there exist weights w1, . . . , wm ≥ 0 with
maxwi = 1 such that

M(x1, . . . , xm) = min
i=1,...,m

{max(wi, xi)}.

4 Preference structures and aggregation

In this section we use an axiomatic construction of preference structures
suggested by Fodor and Roubens [3,4]. We concentrate mainly on the strict
preference relation P defined from R (as well as Pi defined from Ri).

If we want to determine the global credibility of the proposition “a is
strictly better than b”, two ways might be used to achieve this goal, each
having two steps :

1a. Aggregate the monocriterion relations Rj to obtain a global outranking
relation R = M(R1, . . . , Rm).



1b. Define P = p(R, R−1), according to axiomatics in [3,4].
2a. For each point of view j, define the strict preference Pj = p′(Rj , R

−1
j ).

2b. Aggregate these strict preferences to obtain P ′ = M ′(P1, . . . , Pm).

We can illustrate these two procedures in Figure 1.

Fig. 1

We now examine conditions under which both procedures (1a,1b) and
(2a, 2b) result in the same global strict preference relation.

Consider
R = M(R1, . . . , Rm) = max

j∈1,m
hj(Rj).

Due to the completeness of R, the axiomatical analysis of strict preference
(see [3,4]) gives:

P = Rd = 1− max
j∈1,m

hj(R−1
j )

which is an antisymmetric and transitive relation:

min(P (a, b), P (b, a)) = 0

P (a, b) ≥ min(P (a, c), P (c, b)) , ∀a, b, c ∈ A.

Using the same arguments, we define Pj = Rd
j and we consider

P ′ = M ′(P1, . . . , Pm) = M ′(Rd
1, . . . , R

d
m) = P.

We then obtain,

M ′(1−R−1
1 , . . . , 1−R−1

m ) = 1− max
j∈1,m

hj(R−1
j )

and finally,
M ′(x1, . . . , xm) = min

j∈1,m
(1− hj(1− xj)) .



A convenient particular pair (M, M ′) to obtain P = P ′ is thus given by
the pair of weighted maximum and minimum:

M(R1, . . . , Rm;ω1, . . . , ωm) = max
j∈1,m

min(ωj , Rj)

M ′(P1, . . . , Pm;ω1, . . . , ωm) = min
j∈1,m

max(1− ωj , Pj).

We finally obtain a synthesis of the previous result in Figure 2:

Fig. 2

Every α-cut of the valued relation P is a crisp antisymmetric and transi-
tive relation, i.e., a crisp partial order.
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