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Abstract: The questions addressed in this paper concern the applicability of dynamic 
system LQ control tasks using neural networks as well as a method how the exposed 
problems can be reduced to a standard formulation using dual heuristic dynamic 
programming and back-propagation training. There are presented some background 
materials on the recursive least-square methods, formulated in terms of generalized LQ 
control and task-determination of neural network structure. The results arise with such 
neural representation and their training capability, which could be useful in uncertain 
dynamical system control. This application can be considered as a task concerned the 
class of problems referred to as reinforcement learning and is based on the existence of 
the dynamic model of systems. 
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1 Introduction 

One of the principal reasons for introducing feedback into a control system is to 
obtain relative insensibility to changes in plant parameters and to disturbances. It 
is well-known fact that linear quadratic (LQ) optimal control yields a stable 
closed-loop system and the minimal value of the criterion for any initial (non-
zero) condition. The disadvantage of applying these ideas, however, is that the 
computational burden associated with the implementation is proportional to the 
cube of system order. 

The LQ control design can be cast as an optimization problem that involve matrix 
equation, where this equation have the form of discrete or algebraic Riccati 
equation. In general, optimization problem solving need methods that can capture 
high order complexity and uncertainty of the system. One class of this method is 



Adaptive Critic Design (ACD). ACD approximate dynamic programming for 
optimal decision making in noisy, non-stationary or non-linear environments. 

Using neural network a typical ACD include action, critic and model modules. 
Each module can be a neural network or, alternatively, any differentiable system. 
Heuristic dynamic programming is so a neural network approach to solve Bellman 
equation, where for neural LQ control structure three neural nets can be used –one 
used to train the control gain (action), one for functioning as the Lyapunov 
function observer (critic), and a third could be trained to copy the system model. 
Good knowledge of the derivatives of an optimization criterion is a prerequisite to 
find a solution. 

The paper present an algorithm to solve the optimization tasks concerning with 
neural structure design of the discrete-time LQ control, where dual heuristic 
programming is used for realization of this closed form structure. Dual heuristic 
dynamic programming have an important advantage since its critic module 
produces a representation for parameter derivatives being explicitly trained on 
them. 

The most applicable publications which have dealt with the above mentioned 
problem are presented in paper References. 

2 Discrete-time LQ Control 

In general, a discrete-time multi-variable system can be considered as 

( 1) ( ) ( )i i i+ = +x Fx Gu        (1) 

( ) ( )i i=y Cx         (2) 

where x(i)  Ρn, u(i)  Ρr, y(i)  Ρm, are state, input and output vectors, respec-
tively, and system matrices F  Ρnxn, G  Ρnxr, C  Ρmxn, are finite valued ones. 

For such an system (1), (2), which must be controllable, the optimal control design 
task is to determine the control 

( ) ( ) ( )i i i= −u K x               (3) 

that minimizes the quadratic cost function 
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where N is finite, Q  Ρnxn and Q*  Ρnxn are symmetric positive semi-definite 
matrices, R  Ρmxm is a symmetric positive definite matrix, S  Ρmxm is a constant 
matrix and K(i)  Ρrxm is the optimal control gain matrix. 

Using (3) criterion (4) can be rewritten as 
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The Lyapunov function may be used in the procedure of LQ optimal control 
design. For the best obtainable Lyapunov function 

( ( )) ( ) ( 1) ( )TV i i i i= −x x P x              (9) 

the function difference is given by 

( ( )) ( 1) ( ) ( 1) ( ) ( 1) ( )T TV i i i i i i i∆ = + + − −x x P x x P x                      (10) 

where P(i)  Ρnxn  is a positive definite matrix, P(-1) = P(0) and ∆V(x(i) < 0. 
Using (1), in accordance with (3), for the difference of the Lyapunov function 
follows 
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( ( ), ( )) ( ( ) ( )) ( )( ( ) ( )) ( ) ( 1) ( )T Tv i i i i i i i i i i= + + − −x u Fx Gu P Fx Gu x P x               (12) 

( ) ( ( )) ( )( ( )) ( 1)T
V i i i i i= − − − −J F GK P F GK P                  (13) 

respectively. 

The Lyapunov function value at the time point i = N-1 for a non-zero initial 
system state vector is 

1

0
( ( )) ( ) ( 1) ( ) (0) (0) (0)

N T T

i
V V i N N N

−

=
= ∆ = − −∑ x x P x x P x                      (14) 

and using (11) – (13) 
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Adding (15) and subtracting (14) (i.e. adding zero value) to (7), the cost function 
for the linear feedback control law (3) can be expressed as 
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Setting 

*( 1)N − =P Q                                 (17) 

the cost function (16) takes the form 
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respectively. In this form the cost function is explained in dependency on a non-
zero initial system state vector values. 

3 Control Law Optimization 

It is presumed that the optimal control law optimized (18), i.e. the followed 
modified criterion 
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has to be minimized. It is evident, that the condition 
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imply 



( ( ) ) ( ) ( ( ) ) ( )T T Ti i i i+ + + =S F P G x R G P G u 0                            (22) 

1( ) ( ( ) ) ( ( ) ) ( ) ( ) ( )T T Ti i i i i i−= − + + = −u R G P G S F P G x K x                        (23) 

1( ) ( ( ) ) ( ( ) )T T Ti i i−= + +K R G P G S F P G                                          (24) 

respectively, and condition 
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give 
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If the control gain matrix is given by (24) and P(i) is a solution of the Riccati 
equation (28) then, using (27) and (24), the value of (19) can be expressed as 
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and the minimal value of the criterion (18), (19) is 

(0) (0) (0)T
NJ = x P x                                   (30) 

The design progresses backward in time from time point i = N-1, using the final 
value of the P(N-1), with the optimal gain matrix K(i) defined by (24) and with 
the matrix sequence P(i-1) obtained from Riccati equation (28). It is evident that 
(28) form a set of nonlinear difference equations, which may be solved recursively 
starting from P(N-1) = Q*. 



4 Parameterization of Control Design Task 

The control design objective is to construct a feedback controller u(i) = -K(i)x(i) 
such that the quadratic performance index (4) is minimized. This problem is 
equivalent to finding for system state x(i) the control function u(i) = g(x(i)) and 
the Lyapunov function V( x(i)) of given special structure. 

Assuming, that system is on the form of discrete-time state-space description and 
the performance index is (7), then the design task conditions can be rewritten as 

( ( ), ( )) ( ) ( ) ( 1)f i i i i i= + = +x u Fx Gu x                                             (31) 
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( ( )) ( ) ( ) ( )g i i i i= − =x K x u                                 (33) 

and for stabilization the Lyapunov function V(x (i)) 

( ( )) ( ) ( 1) ( )TV i i i i= −x x P x                           (34) 
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is used. Using the dynamic programming principle the actual error minimization 
can be considered as the minimization of the function 
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The Pontryagin minimum principle implies, if there is no bounds on u(i), the 
minimizing u(i) must be such, that 
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Applying this, the value of p(x(i),u(i)) be zero. 



5 Action Network Structure 

In the sense of the Pontryagin minimum principle, the target for an action network 
minimization can be defined as zero and the network output error is 
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for the action neural network training, a steepest-descent discrete gradient method, 
based on error back-propagation algorithm, can be applied to solve this 
minimization problem, i.e. 
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where 
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Variable n and r designate the number of state and input variables, respectively 
and this target is fixed trough whole control time. 

Those, the full-connected input/output action network structure have to be used 

[ ]( ) ( ) ( ) ; ( )T T T T
AI AOi i i i = = w x u w 0                               (42) 

with linear neuron activation functions. 

Trained action neural network presents a non-parametric representation of gain 
vector K(i), where matrix (S + FTP(i)GT) is determined by synaptic weight 
products between xT(i) and wAO(i) and matrix (R + GTP(i)G) is given as a synaptic 
weigh products between u(i) and wAO(i). 



6 Critic Network Structure 

Method of heuristic dynamic programming use a critic network, where the critic 
neural network is trained using the assumption of the optimal response. The critic 
is trained forward in time, which is of the great importance for real-time operation 
in LQ control based on neural network structure. 

Since (38) implies 
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the right side of (43) can be considered as a desired vector of partial derivatives of 
the Lyapunov function with respect to the state vector x(i), which gives for the j-th 
desired output of the critic neural network at all control point i 
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are given as the product of synaptic weights on the path from the j-th input to k-th 
output of the action neural network. 

The training criterion for critic neural network can be defined as 
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and the neural network optimization procedure is given by 
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It is evident that the basic strategy to update the  networks can be given by the 
straight application of (41) and (43), (46). The better critic neural network 
approximate criterion the better the action neural network will approximate an 
optimal control. 

Also the critic network is the full-connected input/output network structure 

( ) ( ) ( ) ; ( ) ( )T T T T oT
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with linear neuron activation functions. 

Using presented strategy the targets (needed for the critic network training) are 
typically calculated by running the critic network one more computational cycle to 
provide its next-in-time output, and then use this value to compute the target for 
the present-time cycle. The error term is calculated and the critic network update 
is performed in the usual way. Since the critic network that calculates the target is 
changing with each update, it provides a moving target for critic neural network 
training. 

Conclusions 

The paper presents some background material on the LQ control design, an 
overview of the heuristic dynamic programming problem and a survey of 
techniques considered from the point of feed-forward multi-layer perceptron 
neural network training. 

Presented application, based on the existence of a complete model of the environ-
ment and the system model, involved then back-propagation utilities with system 
response parameterization. This approximation of the gradient algorithms for 
parameter updating in the sense of the mean value for given training set is a basic 
one for implementation of presented tasks using adaptive critic design for neuro-
control, which is suitable for learning in noisy and non-stationary environments. 

Applications can be considered as a task concerned the class of problems referred 
to as reinforcement learning algorithms. Reinforcement learning is a general way 
to formulate complex learning problems. The goal of the system is to maximize a 



long terms sum of an instantaneous reward (provided by the teacher). It is a 
decision process based on system environment simulation and in its extremum 
form it only requires that the teacher can provide a measure of success. 
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