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Abstract: The paper is dedicated to classification of documents into one of available 
classes. The role of a classifier is played by Bayesian network classifiers having the 
structure of an augmented Naive Bayes classifier. The focus is on quality measures 
enabling to compare different Bayesian networks and select the better one while searching 
a space of possible network structures. Experiments with several quality measures and 
several types of network structures were carried out using an English document collection. 
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1 Introduction 

Classification task steadily attracts attention of many practitioners and researchers 
thanks to new applications related with information acquisition from the Web (for 
example see [5]). Most of used approaches ignore relationships among attributes. 
Since considering these relationships can be a way how to increase the 
performance of classification, new classification methods are called for. The use 
of Bayesian networks seems to be very promising from this point of view. 

The problem with this approach is that many algorithms for learning Bayesian 
networks need a measure in order to compare different networks and select the 
better one. Since classification is not a typical task performed by Bayesian 
networks (a special network structure is required), widely used quality measures 
are not guaranteed to be suitable for this task. 

2 Defining a Lingo 

The following notation is used in this paper: 



B – Bayesian network over random variables {X1,…,Xn}, B=(S,θ) 

S – structure of a Bayesian network 

θ - parameters of a Bayesian network 

Xi – discrete variable having ri possible values 

C – class variable 

Ai – attribute variable, i=1,...,n-1 

D – set of training cases,  ||D|| = N 

Pai – set of parents of variable Xi, having qi possible combination of values 

Nijk – number of cases in D where random variable Xi is in configuration k 
and its parents are in configuration j 

Nij – number of cases in D where parents of random variable Xi are in 
configuration j 

3 Bayesian Network Classifier 

Using Bayesian networks for the classification task [7] imposes some constraints 
on the network structure. In our case variables can be divided into two groups. 
One variable represents classification classes – the variable is multinomial having 
so many different possible values as the number of classification classes is. This 
variable is called class variable. The other variables represent the presence or 
absence of features which are important from the point of classification. Those 
variables are binary and are called attribute variables. 

Similarly, arcs can be divided into two groups as well: 

• Classification arcs – arcs between the class variable and one of attribute 
variables. This type is compulsory, there must be defined at least one 
classification arc in Bayesian network classifier. 

• Augmenting arcs – arcs between two attribute variables. They are optional. 

The presence and the number of classification and augmenting arcs depend on a 
particular network structure. 

Learning of a Bayesian network classifier is based on a set of training data. It 
results into determining the exact network structure, prior probability of the class 
variable, and local conditional probability distributions corresponding to attribute 
variables. For example, it is possible to use learning algorithms aiming at 
approximation of joint probability distribution of all variables. 



The classification itself can be carried out as calculation of maximum posterior 
probabilities of available classification classes resulting from the presence or 
absence of relevant features. 

 
Figure 1 

Naive Bayes structure 

It is possible to use different types of structures which differ from each other by 
possible arrangements of arcs, both classification and augmenting ones. Most 
popular structure is the one depicted in Figure 1. This structure represents Naive 
Bayes classifier (NB), containing only classification arcs between the class 
variable and each attribute variable. 

3.1 Augmented Naive Bayes 

Many network structures used by Bayesian network classifiers are of ‘augmented 
Naive Bayes classifier’ type. They modify the basic NB structure in two ways – 
by adding augmenting arcs (representing relationships among attribute variables), 
and  by removing classification arcs. 

We have considered the following structures (Figure 2): 

STAN (Selective Tree Augmented Naive Bayes). This structure imposes a tree-
like relationship structure on attribute variables. But unlike [3], not each attribute 
variable must be related with the class variable. It is possible to omit some 
classification arcs (but not all – at least one should be present). 

Learning is performed as searching a network candidate space (to learn candidate 
network structures a method for learning tree-like structures by Chow and Liu [2] 
can be used). The search starts with an empty set of classification arcs and a 
greedy procedure tries to add as many classification arcs as possible (an arc is 
added only if the resulting structure is better according to a quality measure). 



 
Figure 2 

STAN (left) and STAND (right) network structures 

STAND (Selective Tree Augmented Naive Bayes with Discarding). This structure 
is based on the same principle as the STAN structure. The only difference is, that 
those attribute variables, which are not related with the class variable directly, are 
not considered when generating tree-like relationship structure. As a result, these 
attribute variables are considered to be completely irrelevant. 

4 Quality Measures 

Quality measure selection is crucial for estimating the quality of learned Bayesian 
networks. Since the selected measure guides the whole search through the space of 
all network structures, the decision on its selection heavily influences the quality 
of the final network structure – with a direct impact on the quality of the 
classification process. 

Basically, all quality measures can be divided into two categories – global and 
local measures [7]. Global measures are those widely used in Bayesian network 
business. While assessing a network, they take the complete network into account 
without preference for a particular part of the network. Therefore, each variable is 
important equally – the one representing classification classes as well as the one 
standing on behalf of a particular attribute. 

On the other hand, local quality measures prefer a particular part of the network 
and the quality evaluation is based on this part. Not surprisingly, the variable 
representing classification classes is a hot candidate for the preferred part of the 
network when solving a classification task – the network will be evaluated at the 
class variable. 



4.1 Heckerman-Geiger-Chickering Measure 

This measure represents a global quality measure. It aims at the posterior 
probability of the network structure S given a training data set D. 
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( )Dp

DSpDSp ,| =  (1) 

Since D is the same for each evaluated network (i.e. it plays the role of a 
constant), only p(S,D) part is considered (using chain rule): 

( ) ( ) ( )SDpSpDSpQHGC |loglog,log +==  (2) 

Since p(S) is unknown, we assume a uniform probability distribution over all 
possible S. It results in a possibility to omit the structure probability element. 

The second constituent of the formula can be expressed using the Bayesian 
Dirichlet metric [4]. It enables to transform the quality measure into the following 
formula 
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where αijk and αij represent Dirichlet prior parameters, and Γ represents the gamma 
function 
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4.2 Standard Bayesian Measure 

This measure is also a global one. It considers the quality of approximation of the 
joint probability distribution. The evaluated quality can be measured as posterior 
probability of the network B given training samples D: 

( ) ( ) ( )
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Similarly to the QHGC measure, D is the same for each evaluated network. 
Therefore, only p(S,θ,D) part is taken into account. The use of chain rule enables 
us to substitute it with the product of three probabilities 

( ) ( ) ( ) ( )SDpSpSpDSp ,||,, θθθ =  (6) 



Naturally, the measure formulated in an above given way will prefer larger 
networks, since they have more parameters enabling better fit. On the other hand, 
the more parameters, the bigger chance to overfit the network to training data 
leading to poor generalisation. Therefore, the quality measure penalises the size of 
the network. 

The composition of both parts of the measure provides the following formula 
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Assuming that all variables in the network have multinomial distribution leads to 
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where p(S) was neglected for it is a constant (we assume each network structure to 
be equally probable). 

This size of a Bayesian network can be calculated as the number of free 
parameters required to completely specify the joint probability distribution 
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4.3 Local Criterion Measure 

This measure is an example of a local quality measure. It is based on an idea to 
employ posterior probability of test data collection given a network structure and 
training data 

( ) ( )( )SDxp ll ,|  (10) 

where D(l)={x(1),x(2),…,x(l-1)} represents training cases, while the lst case serves as a 
test case. A measure based directly on the above given posterior probability would 
represent a global measure since the complete network (all variables) is taken into 
account. Transforming this idea into the form of a local criterion (only the variable 
representing classification classes matters) provides the following formula 
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where c(l) is value of the class variable and a(l) is the configuration of attributes in 
the lst case. 

The measure assumes the use of a certain number of cases (all but last are used to 
train the network, the last one is used as a test case) while this number 
incrementally increases. 

4.4 Leave-one-out Cross Validation 

This measure is based on the same idea as the previous one, including the same 
transformation from a global measure to a local one. The only difference is, that 
the number of used cases does not increase incrementally but it is constant – all 
cases are used. One of them plays the role of a test case while the others are 
utilised to train the network. The quality measure has the form 
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where Vl represents the data set D with the lst case removed. 

4.5 Φ-fold τ-times Cross Validation 

This local measure is based on the same idea of the marginal probability of the 
class variable as the previous local measures. The difference is in the management 
of dividing the data set into test and training parts. The data cases are divided into 
Φ disjoint subsets which are approximately of the same size – one of them plays 
the role of a test set while the others represent training data. In this way there is Φ 
possibilities to form a training set - test set pair. Moreover, the Φ-fold validation is 
repeated τ times. 

The formula for this quality measure has the following form 
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where Vi stands for training data while Wi represents test data. 

In particular case Φ=||D|| and τ=1 this measure is the same as Leave-one-out 
cross validation measure. 



5 Experiments and Results 

In order to carry out experiments [6], we used an English document collection 
Reuters-21578. The collection was divided into training and test sets closely 
following ApteMod division of the collection. 

The documents from the collection were preprocessed by removing auxiliary 
words (defined in a stoplist for the English language) and transforming the other 
words using Porter’s stemmer. Those categories, containing less than one hundred 
documents, were removed from the collection. Terms with very low document 
frequency (less than five documents) were removed from the list of used terms. 
The preprocessing phase resulted in a collection of 8520 documents, 10 
classification categories, and 4359 terms. Finally, the list of terms was reduced to 
200 terms using information gain criterion. 

The aim of our experiments was to compare the performance of different quality 
measures used in the learning step of Bayesian network classifier design. The 
comparison was based on comparing the performance of final classifiers designed 
using different quality measures (two different network structures were used – 
STAN and STAND). The performance was evaluated by employing precision and 
recall criteria. 

Precision was calculated according to the following formula 

FPTP
TP
+

 (14) 

where TP (true positive) represents the number of test cases classified correctly 
and FP (false positive) stands for the number of cases which were classified into a 
class despite they do not belong to the class. 

Recall was calculated according 

FNTP
TP
+

 (15) 

where FN (false negative) represents the number of test cases which were not 
classified into a class despite they belong to the class. 

Since the preprocessed document collection contained ten classification 
categories, some kind of composition of the results achieved for each category 
should be used. We employed macro averaging – precision and recall are 
calculated for each classification category with subsequent averaging of these 
values. 



 
Figure 3 

Experiment results 

Achieved results are presented in Figure 3. A clear distinction between global and 
local quality measures was justified. The performance of global quality measures 
is not satisfactory for the document classification task. Selecting a local quality 
measure is a better choice. 

Conclusions 

The aim of the paper was to compare several quality measures for learning 
Bayesian networks in respect to a document classification domain. Experiments 
have proven the importance of selecting quality measures suitable for a particular 
application domain when learning Bayesian networks. A proper choice can 
increase the performance of the final classifier by several percentages. 
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