
A Boosting method in Combination with
Decision Trees

Kristína Machová1, Miroslav Puszta2 , Peter Bednár3
1Department of Cybernetics and Artificial Intelligence, Technical University,
Letná 9, 04200 Košice, Kristina.Machova@tuke.sk
2 Department of Cybernetics and Artificial Intelligence, Technical University,
Letná 9, 04200 Košice, Miroslav.Puszta@accenture.com
3Department of Cybernetics and Artificial Intelligence, Technical University,
Letná 9, 04200 Košice, Peter.Bednár@tuke.sk

Abstract: This paper describes boosting – a method, which can improve results of
classification algorithms. The use of this method aims at classification algorithms
generating decision trees. A modification of the AdaBoost algorithm was implemented.
Results of performance tests focused on the use of the boosting method on binary decision
trees are presented. The minimum number of decision trees, which enables improvement of
the classification performed by a base machine learning algorithm, was found. The tests
were carried out using the Reuters 21578 collection of documents as well as documents
from an internet portal of TV Markíza.

Keywords: classification algorithms, boosting, binary decision trees, text categorisation

1 Introduction
We live in an information society. Information and data are stored everywhere,
mainly on the Internet. To serve us, this information had to be transformed into the
form, which people can understand, i.e. into the form of knowledge. This
transformation represents a large space for various machine learning algorithms,
mainly classification ones. The quality of the transformation heavily depends on
the precision of classification algorithms in use.

The precision of classification depends on many aspects. Two of most important
apects are the selection of a classification algorithm for a given task and the
selection of a training set. Basic principles of machine learning algorithms can be

used in order to select/construct a suitable machine learning algorithm [2]. In the
frame of this paper, we have focused on experiments with training set samples,
with the aim to improve the precision of classification results. At present, two
various approaches are known. The first approach is based on an idea of making
various samples of the training set. A classifier is generated for each of these
training set samples by a selected machine learning algorithm. In this way, for k
variations of the training set we get k resulting classifers. The result will be given
as a combination of individual classifiers. This method is called Bagging in the
literature [1]. Another similar method called Boosting [3] performs experiments
over training sets as well. This method works with weights of training examples.
Higher weights are assigned to uncorectly classified examples. That means, that
the importance of these examples is emphasized. After the weights are updated, a
new classifier is generated. A final classifier is calculated as a combination of base
classifiers. The presented paper focuses on this method.

2 Boosting
 Boosting is a method for improving results of machine learning classification
algorithms. In case of classification into two possible classes, an algorithm creates
on the base of a training set of documents D a classificator H: D {-1,1}. The
boosting method creates a sequence of classifiers Hm, m=1,…,M in respect to
modifications of the training set. These classifiers are combined into a resulting
classifier. The prediction of the resulting classifier is given as a weighted
combination of individual clasifier predictions:









= ∑

=

M

m
immi dHsigndH

1
)()(α

Parameters αm, m=1,…,m are determined in such way, that more precise
classifiers influence the resulting prediction more than less precise ones. Precision
of base classifiers Hm can be only a little bit higher than precission of a random
classification. That is why these classifiers Hm are called weak classifiers.

The training set is modified by a weight distribution over individual documents di
Є D. The set of weights is assigned uniformly before learning of the first
classifier. For each next iteration, the weights of training examples, which were
classified uncorectly by the previous clasifier Hm-1, are increased. The weights of
those training examples, which were classified corectly, are decreased. In this
way, the learning of next classifier focuses on uncorectly clasified training
examples.

We do not consider to be necessary to present all boosting algorithms, we
experimented with. Only the AdaBoost.MH2 algorithm will be presented in this
paper. This algorithm represents a generalisation of the basic form of the

algorithm for multiple classification into more than two classes. This algorithm
creates clasificators Hm: DxC R, which define prediction for each class cj Є C.
Similary to the classification into two classes, H classifies documents into a class
cj Є C according to decision function sign[H(dj, cj)]. The difference from basic
algorithm is, that a weight distribution is assigned to combinations of training
examples and classification classes.

A boosting algorithm for multiple classification into several classes.

1. Initialise weight distribution w1(i, j) = 1 / (|D||C|), i = 1, ..., |D|, j = 1, ..., |C|
2. For pre m = 1, ..., M
2.1. Create a classifier Hm: D × C → R using a given algorithm for actual weight
 distribution wm(i, j).
2.2. Determine parameter αm ∈ R.
2.3. Modify the weight distribution according to the rule

m

jimjimjim
jim Z

cdHyw
w

)),(exp(,),(
),(1

α−
=+

where Zm is a normalisation constant ensuring that ∑ ∑= = + =
||

1

||

1),(1 1D

i

C

j jimw

holds.

3. The output is the decision function of the final classifier in the form:









= ∑

=

M

m
jimmji cdHsigncdH

1
),(),(α

Variable yi,j is defined as yi,j = +1 if di ∈ cj and as yi,j = -1 if di ∉ cj.
Classification error on training examples is bound by the formula:

∑∑ ∏
= = =

≤≠
||

1

||

1 1
,)),((

||||
1 D

i

C

j

M

m
mjiji ZycdHI

CD

From the given limit it is possible to calculate value of αm for a given classifier Hm
similarly as for (Algorithm I) as minimisation of the normalisation constant

∑∑
= =

−=
||

1

||

1
,),()),(exp(

D

i

C

j
jijimjimm cdHywZ α

If it is possible to influence the learning of the classifier Hm directly, classification
error can be minimised also by specifying prediction Hm when keeping parameters
αm constant.

In our experiments we used a modified version of the algorithm. The advantage of
this modified version is that weight calculation does not depend on precision of
calculations, and there are no problems with number rounding. Therefore, this
algorithm is suitable for document classification, which this paper is devoted to.

3 Text categotization
We decided to base our experiments with boosting on the text categorisation task.
The aim is to find an approximation of an unknown function Φ : D × C → {true,
false} where D is a set of documents and C = {c1, ..., c|C|} is a set of predefined
categories. The value of the function Φ is for a pair 〈di, cj〉 true if document di

belongs to the category cj. The learned function Φ̂ : D × C → {true, false} which
approximates Φ̂ is called a classifier. Definition of text categorisation is based on
these additional suppositions:

• Categories are only nominal labels and there is no (declarative or
procedural) knowledge about their meaning.

• Categorisation is based solely on knowledge extracted from text of the
documents

This definition is a general one and does not require availability other resources.
These constraints may not hold in operational conditions when any kind of
knowledge can be used to make the process of categorisation more effective.

Based on a particular application it may be possible to limit the number of
categories for which the function Φ has the value true for a given document di. If
the document di can be classified exactly into one class cj ∈ C, it is the case of the
classification into one class and C represents the set of disjoint classes. The case
when each document can be classified into an arbitrary number k = 0, ..., |C| of
classes from the set C represents multiple classification and C represents the set
of overlapping classes.

Binary classification represents a special case when a document can be classified
into one of two classes. Algorithms for binary classification can be used for
multiple classification as well. If classes are independent from each other (i.e. for
each class cj, ck and j ≠ k is the value of Φ(di, cj) independent from the value Φ(di,
ck))), the problem of multiple classification can be decomposed into |C|
independent binary classification problems into classes },{ ii cc for i = 0, ..., |C|.

In this case a classifier for cj category stands for the function jΦ̂ : D → {true,

false}, which approximates unknown function Φ j : D → {true, false}.
With respect to the abovementioned decomposition, we used binary decision tree
in the role of a base classifier.

4 Classifier efficiency evaluation
The evaluation of classifier efficiency can be based on a degree of match between
prediction Φ̂ (di, cj) and actual value Φ(di, cj) calculated over all documents di ∈ T
(or di ∈ V). Quantitatively it is possible to evaluate the effectivity in terms
of precision and recall (similarly to evaluating methods for information retrieval).
For classification of documents from class cj it is possible to define precision πj as
conditional probability Pr(Φ(di, cj) = true | Φ̂ (di, cj) = true). Similarly, recall ρj
can be defined as conditional probability Pr(Φ̂ (di, cj) = true | Φ(di, cj) = true).
Probabilities πj and ρj can be estimated from a contingence table Table 1.

jj

j
j FPTP

TP
+

=π ,
jj

j
j FNTP

TP
+

=ρ

where TPj and TNj (FPj and FNj) is the number of correctly (incorrectly) predicted
positive and negative examples of the class cj.

Table 1. Contingence table for category cj.

 Φ(di, cj) = true Φ(di, cj) = false

Φ̂ (di, cj) = true TPj FPj

Φ̂ (di, cj) = false TNj FNj

Overall precision and recall for all classes can be calculated in two ways. Micro
averaging is defined in the following way:

∑
∑

∑
∑

=

=

=

=

+
=

+
=

+
=

+
=

||

1

||

1

||

1

||

1

)(

)(

C

j jj

C

j j

C

j jj

C

j j

FNTP

TP

FNTP
TP

FPTP

TP

FPTP
TP

µ

µ

ρ

π

while macro averaging is given by the following equations

||||

||

1

||

1

CC

C

j jM

C

j jM ∑∑ == ==
ρ

ρ
π

π .

The selection of a particular way of averaging depends on a given task. For
example, micro averaging reflects mainly classification of cases belonging to
frequently occurring classes while macro averaging is more sensitive to
classification of cases from less frequent classes.

Precision and recall can be combined into one measure, for example according to
the following formula

ρπβ
πρβ

β +
+

= 2

2)1(F

where parameter β expresses trade off between Fβ and π and ρ. Very often can be
seen the function F1 combining precision and recall using equal weights.

Lacking training data (when it is not possible to select a sufficiently representative
test set), it is possible to estimate classification efficiency using cross validation
when Ω is divided into k test subsets T1, ..., Tk.. For each subset a classifier Φ̂ i is
learned using Ω - Tk. as a training set. Final estimation can be calculated by
averaging results of classifiers Φ̂ i relevant to all test subsets. Cross validation
can be employed for parameter optimisation instead of validation set.

5 Experiments
A series of experiments was carried out using a binary decision tree as a base
classifier. Data from two sources were employed. The first one was the

Reuters215781 document collection, which comprises Reuter‘s documents from
1987. The documents were categorised manually. To experiment, we used a XML
version of this collection. The collection consists of 674 categories and contains
24242 terms. The documents were divided into a training and test sets – the
training sets consists of 7770 documents and 3019 forms the test set. After
stemming and stop-words removal, the number of terms was reduced to 19864.

The other document collection, used to perform experiments, was formed by
documents from an Internet portal of the Markiza broadcasting company. The
documents were classified into 96 categories according to their location on the
Internet portal www.markíza.sk. The collection consists of 26785 documents in
which 280689 terms can be found. In order to ease experiments, the number of
terms was reduced to 70172. This form of the collection was divided into the
training and test sets using ratio 2:1. The training set is formed by 17790
documents and the test one by 8995 documents. Documents from this collection
are in the Slovak language unlike the first collection , whose documents are in
English.

In order to create decision trees, the famous C45 algorithm was used. This
algorithm is able to form perfect binary trees over training examples for each
decision category. To test the boosting method, weak classifiers (not perfect) are
necessary. Therefore, the trees generated by the C4.5 method were subsequently
pruned.

We used a pruning method, which estimates accuracy using the training set for
parameter setting. The method is based on a pessimistic error estimation. Namely,
C4.5 constructs the pessimistic estimation by calculating standard deviation of
estimated accuracy given binomial distribution.

5.1 Boosting efficiency testing
Experiments have proven that one of the best classifiers, based on the boosting
algorithm, is the one for generating decision trees with pruning on confidence
level CF=0.4. Results achieved by this classifier were compared with those
generating perfect decision trees. Figure 1 depicts differences between precisions
of the boosting classifier and the perfect decision tree generating one. Data are
shown for each classification class separately (the classes are ordered decreasingly
according their frequency).

1 Most experiments were carried out using this document collection, if not given otherwise.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

di
f

Figure 1 Precision differences between boosting-based classifier and a perfect
decision tree for data from the Reuters collection

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

di
f

Figure 2 Precision differences between boosting-based classifier and a perfect
decision tree for data from the Markiza collection

Similar experiments were carried out using data from the Internet portal of the
Markiza company. The results are illustrated on
Figure 2. The same parameter setting was used for both the boosting based
classifier and decision tree classifier.
The results can be interpreted in such a way, that the boosting method provides
better results while for frequent classes are the difference is minimal.

5.2 Experiments with different number of classifiers
In order to explore dependence of boosting classifier efficiency on the number of
classifiers, additional experiments were carried out for different ways of pruning.
First, a set of classifiers with different pruning values was trained. The number of
iterations (i.e. the number of generated binary decision trees) of the boosting
algorithm was limited by 100 classifiers. That means, each category was classified
by a weighted sum of not more than 100 classifiers. Subsequently, the number of
used classifiers was reduced and implications on the classifier efficiency were
studied. In order to enable comparison with non-boosting classifier, the efficiency
of a perfect binary decision tree was depicted on the following figures as a broken
red line.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0 5 10 15 20 25 30 35 40

Trees count

Pr
ec

is
io

n

CF = 0,05 CF = 0,2
CF = 0,4 CF = 0,6
CF = 0.8 Simple tree classifier

Figure 3 Relationship between precision and the number of trees in the boosting
classifier

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 10 20 30 40

Trees count

R
ec

al
l

CF = 0,05 CF = 0,2
CF = 0,4 CF = 0,6
CF = 0,8 Simple tree classifier

Figure 4 Relationship between recall and the number of trees in the boosting
classifier

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86

0 5 10 15 20 25 30 35 40

Trees count

F1

CF = 0,05 CF = 0,1
CF = 0,2 CF = 0,4
CF = 0,6 Simple tree classifier

Figure 5 Relationship between ... parameter and the number of trees in the
boosting classifier

The last three figures illustrate that efficiency of classifiers based on the boosting
method does not depend on the quality of particular classifiers (represented by the
pruning values), since the graphs are almost the same for every pruning method.

Figure 5 presents that boosting is superior for the number of classifiers greater
than 5. Using 20 or more classifiers, F1 is practically constant and better by 5%
than perfect binary tree. Considering precision (Figure 3), the situation slightly
differs. For very small number of classifiers (1 or 2), precision of the boosting-
based classifier is better – it proves a hypothesis that precision of decision trees
can be increased by pruning. Increasing the number of classifiers implicates
decreasing of the precision first (but still better than that of the perfect classifier)
with subsequent increasing (up to a constant value around using 35 classifiers).
Recall is depicted in Figure 4. Small number of classifiers clearly does not suffice
and cannot compete with the perfect binary tree. The value of the recall parameter
increases with using bigger number of classifiers – the number 10 was sufficient
to compete with perfect tree. The next increase in the number of used classifiers
prefers boosting over the perfect tree.

6 Conclusion
In order to draw a conclusion from our experiments, several statements can be
formulated. Building binary trees have proven, that their classification quality
heavily depends on pruning.

The boosting algorithm is a suitable mean for increasing efficiency of those
algorithms with low values of precision and recall2. Both these parameters can be
increased.

Considering the same efficiency for a perfect tree and boosting (with minimum
number of classifiers necessary to achieve this efficiency), it would be possible to
compare complexity of both decision schemes. For example, it would be possible
to count the number of nodes of the perfect tree and all trees classifying into the
same class for boosting.

As far as disadvantages of boosting are considered, the loss of simplicity and
illustrative ness of this classification scheme can be observed. Increased
computational complexity is a bit discouraging as well.

The work presented in this paper was supported by the Slovak Grant Agency of
Ministry of Education and Academy of Science of the Slovak Republic within the
1/1060/04 project ”Document classification and annotation for the Semantic web”.

2 Mainly recall for binary trees.

References

[1] Breiman, L.: Bagging predictors. Technical Report 421, Department of
Statistics, University of California at Berkeley, 1994.

[2] Machová, K., Paralič, J.: Basic Principles of Cognitive Algorithms Design.
Proc. of the IEEE International Conference Computational Cybernetics,
Siófok, Hungary, 2003, 245-247, ISBN 963 7154 175.

[3] Schapire, R.E., Singer, Y.: Improved Boosting Algorithms Using
Confidence-rated Predictions. Machine Learning, 37(3), 1999, 297-336.

