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Abstract: In case of fuzzy reasoning in sparse fuzzy rule bases, the question of 
selecting the suitable fuzzy similarity measure is essential. The rule antecedents of 
the sparse fuzzy rule bases are not fully covering the input universe therefore fuzzy 
reasoning methods applied for sparse fuzzy rule bases requires similarity 
measures able to distinguish the similarity of non-overlapping fuzzy sets, too. The 
goal of this paper is enumerating some of these distance based similarity 
measures and briefly introducing them. 
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1 Distance based similarity measure 

The most obvious way of calculating similarity of fuzzy sets is based on their 
distance. There are more approaches on how the relation between the two notions 
in form of a function can be expressed. Two of them are presented below. 

The first function is the following [7]: 

 ( ) ( )BA,DM+1
1=BA,SM , (1) 

where SM is the similarity measure, DM is the distance measure of two fuzzy sets, 
and A respective B are the examined fuzzy sets. 



Another way of distance based similarity assessment is proposed by Williams and 
Steele in [1]. The suggested formula (2) contains an exponential expression. 

 ( ) ( )BA,DM-e=BA,SM ⋅α  (2) 

where α is a steepness measure. The value α=7 was found suitable for the practice 
in case of a one dimensional universe of discourse. 
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Fig. 1. Similarity measures based on eq. (1) SM1 and  on eq. (2) SM2 

The functions (1) and (2) marked with SM1 and SM2 are presented in Fig. 1. 
using normalized distances. SM1 has a uniform sensitivity opposing to SM2 
which has a far higher sensitivity and capability for distinction in the first quarter 
of the interval. 

In case of a multi-dimensional universe of discourse the approximation should be 
started with a universal distance measure. Forming it needs the normalization of 
all linguistic variables for e.g. the interval [0,1]. It can be done by the help of 
Lipschitz functions [2]. 

The universal distance measure is determined as a weighted mean of the distances 
measured along each dimension (3). 

 ( ) ( )∑ =
⋅

n

1i iiU BA,DMw=BA,DM  (3) 

where n is the number of the input linguistic variables, wi is the weighting for the 
ith linguistic variable and DMi is the distance measured along the ith dimension. 

 
∑=

n

1i iw
7=α  (4) 

In a multi-dimensional case the value of α in (2) is determined by the formula (4) 
[1]. 

Instead of calculating similarities from distances, by a small re-explanation of the 
meanings of the fuzzy rules, we can use the distances of fuzzy sets directly for 
approximate fuzzy reasoning. 



Using distance based approximate fuzzy reasoning has an important precondition. 
The distance of fuzzy sets can be defined only on universes where it is possible to 
define full ordering and metrics on every component of the universe of discourse 
of the fuzzy sets (any other case the notion of distance is meaningless). 

A distance function DM: X x X → R can be considered as metrics, if the 
conditions specified below are fulfilled [4]: 

- DM(A,B)≥0 ∀ A,B ∈ X 

- DM(A,B)=0 ⇔ A=B ∀ A,B ∈ X 

- DM(A,B)=DM(B,A) ∀ A,B ∈ X 

- DM(A,B)+DM(B,C)≥DM(A,C) ∀ A,B,C ∈ X 

The City Block (5) and the Euclidean (6) are often used as metrics for distance 
measure in case of crisp values. 

 ∑=
−=

n

1i ii BA=MD , (5) 

 ( )∑ =
−=

n

1i
2

ii BAMD , (6) 

where n is the number of dimensions and i is the serial number of the actual 
dimension. 

2 Non α-cut based similarity measures 

There are many useful distance definitions of fuzzy sets in the literature. The 
simplest one is the Disconsistency Measure (SD) of the fuzzy sets A and B (7) 

 ( )xµsup1S BA
Xx

D ∩
∈

−=  (7) 

where BA∩  is the min t-norm, µA∩B(x)=min{µA(x), µB(x) } ∀ x ∈ X. It is 
basically the same measure as used in the min-max composition. The 
disconsistency measure is one crisp value in range of [0,1].  

In the followings, some distance measures, which are used for expressing the 
similarity of trapezoidal shaped fuzzy sets (or fuzzy sets have membership 
functions can be traced back to a trapezoid form) will be presented. 

In case of trapezoidal shaped fuzzy sets, the fuzzy set can be characterised by a 
vector of four values, by the upper and lower endpoints of the core and support 
e.g. X=[x1,x2,x3,x4]. 



This case the similarity between sets A and B can be described by the formula (8) 
proposed by Chen [5]. 
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1SM(AB)
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1i ii∑=
−

−=  (8) 

If the universes of the fuzzy sets are normalized, then SM(A,B)∈[0,1]. The 
advantage of (8) is its simplicity and low computational complexity. However, its 
drawback is that it can easily lead to the same grade of similarity in case of 
different shapes, too. 

For instance if the trapezoid fuzzy set A=[0.2,0.4,0.6,0.8] is compared to the 
trapezoid term B=[0.4,0.6,0.8,1.0] and to the triangle shaped set 
C=[0.4,0.7,0.7,1.0] and to the D=[0.7,0.7,0.7,0.7] crisp value, the similarity 
measure is 1.6 in each case. 

Chen and Chen proposed a method in [6], which can be used in case of 
generalized trapezoid shaped fuzzy sets, too. This similarity measure (9) is based 
on the calculation of the Center Of Gravity. 
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where C(A,B) is defined as follows: 
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BA,C
1414

1414  (10) 

*
Ax  and *

Ay  are the coordinates of the COG of the set A, respective *
Bx  and *

By  
determine the COG of the set B. The disadvantage of this method is that it can not 
handle cases when the examined sets have the same COG, but their shape is 
different. The increased computational complexity can be considered as an 
additional drawback. 

3 α-cut based similarity measures 

3.1 Simple distance measures 

Most of the distance definitions are based on the α-cuts of the two fuzzy sets, for 
example: 



Hausdorff Measure (∞): 

 ( ) ( )αα
α

BABA ,HMsup,HM
0≥

∞ =  (11) 

Hausdorff Measure (*): 

 ( ) ( )11* ,HM,HM BABA =  (12) 

where 

 ( ) ( ) ( )
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,dinfsup,,dinfsupmax,HM  (13) 

and ( )vu,d  is the Euclidean distance.  

Kaufmann and Gupta Measure (∞): 

 ( ) ( )αα
α

BABA ,sup,
0
∆=∆

≥
∞  (14) 

Kaufmann and Gupta Measure (*): 

 ( ) ( )11* ,, BABA ∆=∆  (15) 

where 

 ( ) ( )
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2
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baba

BA  (16) 

and [a1, a2], [b1, b2] are the supports of Aα, Bα, respectively [β1, β2] is the support 
of both Aα and Bα, α∈[0,1]. 

Both the Hausdorff Measure and Kaufmann and Gupta Measure are a crisp value 
in range of [0,∞].  

3.2 Kóczy’s distance measure 

The main problem of the distance definitions presented above is, that the 
information of the shape of the membership function of the fuzzy sets is mostly 
lost. It is impossible to reconstruct from a given fuzzy set A and from a given 
Hausdorff or Kaufmann and Gupta distance measure of two fuzzy sets A and B, 
the fuzzy set B. This type of reconstruction, at least in the one dimensional case, 
has a great importance in rule interpolation, because without it, from the distances 
of the rule consequents and the fuzzy conclusion we are looking for, it is 
impossible to reconstruct the shape of the fuzzy conclusion. 



Solving these difficulties a useful definition is introduced by Kóczy [7]. This 
distance is based on the α-cuts of the two fuzzy sets too, but the distance is not 
aggregated to one crisp value, so from this kind of distance and from one of the 
fuzzy sets the other set can be reconstructed.  

The distance of two fuzzy sets is expressed by means of a fuzzy set which is 
defined over the interval [0,1]. In the course of calculations the Euclidean 
distances between the end points of the α-cuts are considered. These are called 
lower ( α

Ld ) and upper ( α
Ud ) distances and are calculated by formulas (17) and 

(18) (Fig. 2.). 

 ( ) { } { }ααα ABBAdL infinf, −=  (17) 

 ( ) { } { }ααα ABBAdU supsup, −=  (18) 

If the universe of discourse is multidimensional, the distances between inf{Aα}, 
inf{Bα} and sup{Aα}, sup{Bα} can be defined in the Minkowski sense: 

 ( ) ( )( ) w/1k

1=i
w

ii
α
L B,Ad, ∑=BAdL

α  (19) 

 ( ) ( )( ) w/1k

1=i
w

ii
α
U B,Ad, ∑=BAdU

α  (20) 

 
Fig. 2. Normalised fuzzy distance between the fuzzy sets A and B 

An important restriction for the existence of the Kóczy Distance is that all the 
comparable fuzzy sets should be convex and normal, otherwise some α-cuts are 
not connected or do not exists at all, which makes the distance corresponding to 
these α-cuts meaningless. The only disadvantage of using the Kóczy Distance for 
fuzzy reasoning in sparse rule bases is that it is little bit difficult to handle. 

4 Vague distance of points in a vague environment 

In the case of fuzzy reasoning in sparse rule bases it would be useful such kind of 
distance definition, which is easy to handle, for example the distance of two fuzzy 
sets could be characterised by one crisp number, and give the chance of the 



reconstruction of the membership function of a fuzzy set from another set and 
from their distance, at least in the one dimensional case. 

These seem to be two contradictory conditions, but they can be satisfied, if we can 
find a way for handling the distance of the fuzzy sets and a kind of shape 
description separately. 

4.1 Connection between similarity of fuzzy sets and vague 
distance of points in a vague environment 

The concept of vague environment is based on the similarity or 
indistinguishability of the elements. The x1 and x2 values in the vague environment 
are ε-distinguishable if their distance (δ(x1,x2)) is greater than ε (21). The 
distances in vague environment are weighted distances. The weighting factor or 
function is called scaling function (s(x)). 

 ( ) ( )∫= 1

2

dxxs,> 21

x

xs xxδε  (21) 

For finding connections between fuzzy sets and a vague environment we can 
introduce the membership function µA(x) as a level of similarity of a to x. The α-
cuts of the fuzzy set described by membership function µA(x) (23) form the set 
which contains the elements that are (1−α)-indistinguishable from a (Fig. 3.) (22): 

 αδ −≤1)b,a(s  (22) 
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Fig. 3. 

The vague distance of points a and b (δ(a,b)) is basically the Disconsistency 
Measure (24) of the fuzzy sets A and B (where B is a singleton): 

 ( ) )b,a(sup1 sBA
Xx

D xS δµ =−= ∩
∈

   if  δ(a,b)∈[0,1] (24) 

Thus disconsistency measures between member fuzzy sets of a fuzzy partition and 
a singleton can be calculated, as vague distances of points in the vague 
environment of the fuzzy partition. The main difference between the 



disconsistency measure and the vague distance is, that the vague distance is a crisp 
value in range of [0,∞], while the disconsistency measure is limited to [0,1]. That 
is why it is useful in interpolative reasoning with insufficient evidence. 

So if it is possible to describe all the fuzzy partitions of the antecedent and 
consequent universes of the fuzzy rule-base, and the observation is a singleton, 
one can calculate the disconsistency measures of the antecedent fuzzy sets of the 
rule-base and the observation, and the disconsistency measures of the consequent 
fuzzy sets and the consequence (we are looking for) as vague distances of points. 

4.2 Generating vague environments from fuzzy partitions 

The vague environment is described by its scaling function. For generating a 
vague environment we have to find an appropriate scaling function, which 
describes the shapes of all the terms in the fuzzy partition [8]. The method 
proposed by Klawonn [9], for choosing the scaling function s(x) (25), gives an 
exact description of the fuzzy terms after their reconstruction from the scaling 
function. 
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dxxs µµ == )(')(  (25) 

  

Fig. 4. A fuzzy set and its scaling function 
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Fig. 5. Scaling function describing all the fuzzy sets 

A scaling function always can be found, if there is only one fuzzy set in the fuzzy 
partition (Fig. 4.). Usually the fuzzy partition contains more than one fuzzy set, so 
this method requires some restrictions (26) [9]. 

 if min{µi(x),µj}>0 )(')(' xx ji µµ =⇒   ∀i,j∈I  (26) 



Generally the above condition is not fulfilled, so the use of an approximate scaling 
function is proposed as a “universal” function describing all the fuzzy sets of a 
fuzzy partition. 

4.3 The approximate scaling function 

The approximate scaling function is an approximation of the original scaling 
functions describing the fuzzy sets separately. The simplest way of generating this 
function is the linear interpolation. Supposing that the fuzzy sets are triangles, 
each of them can be characterised by three values, two constant scaling functions, 
which are the scaling factors of the left and the right slope of the triangle and the 
value of the core point (Fig. 6.). 

  

Fig. 6. 

Thus the approximation (s(x)) is a piecewise linear function (27), which 
interpolates the right side scaling factor of the left neighbouring term and the left 
side scaling factor of the right neighbouring term (Fig. 8.). 
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where 

xi is the core of the ith term of the approximated fuzzy partition 
R
i

L
i s ,s  are the left and right side scaling factors of the ith term  

n is the number of the terms in the approximated fuzzy partition 

  
Fig. 8. 

The drawback of the approximation presented above is that it can not handle the 
big differences between neighbouring scaling factors or crisp fuzzy sets correctly. 



In case of big differences, the bigger scaling factor “dominates” the smaller one 
(Fig. 9.,10.). If one of the neighbouring fuzzy set is crisp (its scaling factor is 
infinite), the slope of the linearly interpolated scaling function is infinite too, so 
both the fuzzy sets described by this scaling function will be crisp.  

  

Fig. 9. LR s <<s BA  

  

Fig.10. Linearly interpolated scaling function of fuzzy sets shown in Fig. 9., and 
these sets as the approximate scaling function describes them (A’,B’) 

As a solution of this problem the adoption of a non-linear interpolative function 
(28) is suggested [8]. 
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 R
i

L
1+ii ssw −=  (29) 

where x∈[xi,xi+1),∀ i∈[1,n-1], 

s(x) is the approximate scaling function, 

xi is the core of the ith term of the approximated fuzzy partition, 
R
i

L
i s ,s  are the left and right side scaling factors of the ith triangle shaped term of 

the approximated fuzzy partition, 

k constant factor of sensitivity for neighbouring scaling factor differences, 

n is the number of the terms in the approximated fuzzy partition. 



The above function has same useful properties. If the neighbouring scaling factors 
are equals, s(x) is linear. If one of the neighbouring scaling factors (e.g. Si
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Fig. 11. and 12. show some examples for the application of the proposed non-
linear function. 

  

Fig.11. Approximate scaling function generated by the non-linear function with 
k=1, and the original fuzzy partition (A,B) as this scaling function 
describes it (A’,B’) 
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5 Conclusions 

Distance based similarity measures of fuzzy sets have a high importance in 
reasoning methods handling sparse fuzzy rule bases. The rule antecedents of the 



sparse fuzzy rule bases are not fully covering the input universe. Therefore the 
applied similarity measure has to be able to distinguish the similarity of non-
overlapping fuzzy sets, too. The distance based similarity measures are such a 
measures.  

To give an overview of the distance based similarity measures of fuzzy sets, some 
of the main existing concepts are briefly introduced in this paper. 
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