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Abstract: In this paper the novel modeling and adaptive control technique developed at 
Budapest Tech is investigated in the case of an approximately and partially modeled cart 
plus double pendulum system in which one of the pendulums has variable length due to an 
undamped spring. This spring corresponds to an internal degree of freedom that is not 
controlled though it is in dynamic coupling with the controlled ones. Its existence also is 
“unknown” by the controller. The novelty of the approach is that in contrast to the 
traditional soft computing that tries to build up some “complete” and “permanent” system 
model it is satisfied with “temporal” and “partial” models that are valid only in the actual 
dynamic environment of the system. That is, its validity is limited only to some “spatio-
temporal vicinity” of the actual observations. The main benefits are the use of small, 
simple, lucid, and uniform structures, as well as the occurrence of short algebraic 
operations instead of some obscure tuning in a huge dimensional parameter space. Since 
no unnecessary effort is exerted to identify any analytical model it is expected that the 
effects of the dynamically coupled unmodeled degree of freedom on the motion of the 
controlled and observed ones can also be “learned”. For the investigation of the new 
technique in the past the integration of the equations of motion happened by the simplest 
1st order finite element approach in the time domain. At the end of the summer of 2004 
INRIA issued its SCILAB 3.0 containing the improved scientific co-simulator called 
“Scicos”. Due to it new prospects were opened for making “professional” and in the same 
time “convenient” simulations. In the paper the typical tools available in Scicos, and 
others developed by the authors, as well as the improved simulation results and conclusions 
are presented. It was found that the method successfully compensates the effect of the 
coupled, “unknown” internal degree of freedom. 



1 Introduction 

A new approach for the adaptive control of imprecisely known dynamic systems 
under unmodeled dynamic interaction with their environment was initiated in [1]. 
Instead of the supposed analytical model's parameters this controller uses several 
parameters of some abstract Lie groups serving as flexibly adjustable components 
of a temporal and environment-dependent, uniform, non-analytical model of the 
system to be controlled. This „non-analytical modeling” is akin to the Soft 
Computing philosophy, too. In this approach adaptivity means that instead of the 
simultaneous tuning of numerous parameters, a fast algorithm finding some linear 
transformation to map a very primitive initial model based expected system-
behavior to the observed one is used. The so obtained „amended model” is step by 
step updated to trace changes by repeating this corrective mapping in each control 
cycle. Since no any effort is exerted to identify the possible reasons of the 
difference between the expected and the observed system response it is referred to 
as the idea of "Partial and Temporal System Identification". This anticipates the 
possibility for real-time applications. Regarding the appropriate linear 
transformations several possibilities were investigated and successfully applied. 
For instance, the „Generalized Lorentz Group” [2], the „Stretched Orthogonal 
Group”, the “Partially Stretched Orthogonal Transformations” [3], and a special 
family of the „Symplectic Transformations” [4] can be mentioned. 

The key element of the new approach is the formal use of the „Modified 
Renormalization Transformation”. The „original” version was widely used e.g. by 
Feigenbaum in the seventies to investigate the properties of chaos [5-7]. This 
(originally scalar) transformation modifies the solution of an x=f(x) fixed-point 
problem. Since the adaptive control can be formulated as a fixed-point problem, 
too [8], this transformation was considered a possible candidate for the solution of 
such a task. The modification of the original transformation was necessary due to 
phenomenological reasons. Satisfactory conditions of the complete stability of the 
so obtained control for Multiple Input-Multiple Output (MIMO) systems were also 
highlighted in [8] by the means of perturbation calculation. This means the most 
rigorous limitation of the circle of possible application of the new method. To 
release this restriction to some extent “ancillary” but simple interpolation 
techniques and application of “dummy parameters” were also introduced in [8]. 
The applicability of the method was investigated for electro-mechanical and 
hydrodynamic systems via simulation [9-10]. In this paper a quite simple but lucid 
typical paradigm, a cart conveying a double pendulum is chosen to be the subject 
of the adaptive controller. One of the pendulums has variable length due to an 
undamped spring. This spring corresponds to an internal degree of freedom that is 
not controlled though it is in dynamic coupling with the controlled ones. Its 
existence also is “unknown” by the controller. 

Typical problems arise when the motion of the system is simulated by the use of 
its “exact” equations of motion and a finite element method regarding the time-



resolution. The selection of the length of the interval between the discrete time-
steps considered may seriously concern the numerical results of the calculations. 
This length has to be decreased till the effect of the decrease cannot be observed in 
the numerical results. It has to be stressed that in the case of a real time control 
system the cycle time of the control commands cannot be chosen to be arbitrarily 
small. The “internal” loop of a complex controller can be realized by fast 
hardware and simple calculations while the “external adaptive loop” may need 
more calculations and may have relatively long cycle-time. During these finite 
“external” time intervals the torque/force values exerted by the drives can be 
supposed to be constant while the contribution by the Coriolis and gravitational 
terms of the exact equations of motion must be traced in a finer resolution in the 
simulations and in the internal loop. 

In the sequel at first the paradigm is set mathematically. Following that the basic 
principles of the adaptive control are described. Following the presentation of the 
typical simulation results the conclusions are drawn. 

2 The Dynamic Model of the Cart and Double 
Pendulum of Varying Length System 

Let the cart consist of a body and wheels of negligible momentum and inertia 
having the overall mass of M [kg]. Let the pendulums be assembled on the cart by 
parallel shafts of negligible masses. At the end of each arm a ball of negligible 
size and considerable mass is attached (m1 and m2 [kg], respectively). Let the first 
arm be of fixed length L1 [m]. The length of the 2nd arm is limited by a hub of 
radius rmin. This hub acts as a stiff, elastic bumper that is modeled by conservative 
potential energy term that becomes singular in a thin layer behind its surface. The 
elastic spring that determines the length of the second arm has the stiffness of k 
[N/m], and length of zero force l [m]. In Fig. 1 the generalized coordinates of this 
system are defined. The potential energy of this term is described the equation as 
follows: 
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in which A and ε describe the behavior of the bumper at the hub. 

Since the kinetic energy of this system can be constructed in a quite standard 
manner, it is satisfactory to provide the reader only with the Euler-Lagrange 
equations of motion of this system in which g denotes the gravitational 
acceleration [m/s2], Q1 and Q2 [N×m] denote the driving torque at the rotational 
shaft 1 and 2, respectively, Q4 [N] stands for the force moving the cart and 
pendulum system in the horizontal direction, and Q3≡0 [N], since the internal 



Figure 1 
Definition of the generalized coordinates of the mechanical system 

degree of freedom does not have any drive. (The appropriate rotational angles are 
q1 and q2 [rad], and the linear degrees of freedom belong to q3, and q4 [m], 
respectively.) 
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On the basis of (2) it is easy to express the inverse dynamical equations of motion 
by using numerical matrix inversion for simulation purposes. In the sequel the 
principles of the adaptive control are detailed. 

3 Principles of the Adaptive Control 

From purely mathematical point of view the control task can be formulated as 
follows. There is given some imperfect model of the system on the basis of which 
some excitation is calculated to obtain a desired system response id as e=ϕ(id). The 
system has its inverse dynamics described by the unknown function  
ir=ψ(ϕ(id))=f(id) and resulting in a realized response ir instead of the desired one, 
id. Normally one can obtain information via observation only on the ir values. The 
function f() can considerably vary in time, and no any possibility exists to directly 
"manipulate" its nature: only id as the input of f() can be “deformed” to id* to 
achieve and maintain the id=f(id*) state. On the basis of the modification of the 
method of renormalization transformation widely applied in Physics the following 
"scaling iteration" was suggested for finding the proper deformation: 
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in which the Sn matrices denote some linear transformations to be specified later. 
As it can be seen these matrices map the observed response to the desired one, and 
the construction of each matrix corresponds to a step in the adaptive control. It is 
evident that if this series converges to the identity operator just the proper 
deformation is approached, therefore the controller „learns” the behavior of the 
observed system by step-by-step amendment and maintenance of the initial model. 
Since (3) does not unambiguously determine the possible applicable quadratic 
matrices, we have additional freedom in choosing appropriate ones. The most 
important points of view are fast and efficient computation, and the ability for 
remaining as close to the identity transformation as possible. 

For making the problem mathematically unambiguous (3) can be transformed into 
a matrix equation by putting the values of f and i into well-defined blocks of 
bigger matrices. Via computing the inverse of the matrix containing f in (3) the 
problem can be made mathematically well-defined. Since the calculation of the 
inverse of one of the matrices is needed in each control cycle it is expedient to 
choose special matrices of fast and easy invertibility. Within the block matrices 
the response arrays may be extended by adding to them a “dummy”, that is a 
physically not interpreted dimension of constant value, in order to evade the 
occurrence of the mathematically dubious 0→0, 0→finite, finite→0 
transformations. In the present paper the special symplectic matrices announced in 



[4] were applied for this purpose. In general, the Lie group of the Symplectic 
Matrices is defined by the equations 
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The inverse of such matrices can be calculated in a computationally very cost-
efficient manner as ℑℑ=− TT SS 1 . In our particular case the symplectic matrices 
are constructed from the desired and the observed joint coordinate accelerations 
corresponding to the response of the mechanical system to the excitation of torque 
and force by the use of the matrix 
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in the blocks of a bigger one as 
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in which the e(3),…,e(6) symbols denote unit vectors that lie in the orthogonal sub-
space of the first two columns of the matrix, d is the “dummy” parameter used for 
avoiding singular transformations, and 

222 2 , DsdD T =+≡ qq &&&&  (7) 

The unit vectors in (6) can be created e.g. by using El Hini’s algorithm [3] as 
detailed e.g. in [4]. With the above completion the appropriate operation in (3) 
evidently equals to the identity operator if the desired response just is equal to the 
observed one, and remains in the close vicinity of the unit matrix if the non-zero 
desired and realized responses are very close to each other. Since amongst the 
conditions for which the convergence of the method was proven near-identity 
transformations were supposed in the perturbation theory, a parameter ξ 
measuring the „extent of the necessary transformation”, a “shape factor” σ, and a 
„regulation factor” λ can be introduced in a linear interpolation with small 
positive ε1, ε2 values as 
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Figure 2 
The Scicos scheme of the adaptive control and simulation 



This interpolation reduces the task of the adaptive control in the more critical 
sessions and helps to keep the necessary linear transformation in the vicinity of the 
identity operator. In the forthcoming simulations the following numerical data 
were used: d=800, σ=22, ε1=0.2, ε2=0.1. They were selected “experimentally”. 
The unobserved degree of freedom was treated by this formalism by simply 
dropping the row belonging to the coordinate q3. Consequently, the number of the 
columns in (6) was also decreased by one. 

4 Simulation Results 

In Fig. 2 the Scicos model of the simulation scheme of the controller, the “rough” 
and the “exact” system models is presented. In the simulations for the desired 
relaxation of the trajectory tracking error a simple PID-type rule was prescribed by 
the use of purely kinematic terms. This error relaxation could be achieved exactly 
only in the possession of the exact dynamic model of the physical system to be 
controlled. Instead of the exact actual dynamic model detailed in (2) the constant 
10×I (I= unit matrix) matrix was used as the inertia matrix, and the Coriolis and 
inertial terms were modeled by the constant vector [10, 10, 10]T. This evidently 
corresponds to a very rough approximation of the reality in which m1=15 kg, 
m2=10 kg, L1=2 m, M=3 kg, were chosen. 

The typical “built in” elements as the integrator, the “source elements” as the 
constants, the clock, the “periodic event generators”, and the only “sink”, that is 
the multiple oscilloscope simulator called “Mscope” can well be identified in the 
figure. The other blocks contain “user-developed functions” as the trajectory 
generator “Trajgen”, the model of the PID controller, the rough and the exact 
system models and the “Vector Subtractors”. These user-developed functions can 
be given as common SCILAB instructions that are “interpreted” by Scicos. To 
speed up the operation of the simulator an alternative method is loading and 
compiling the user functions instead of directly writing them in the user blocks. 
(In this case the user block contains only a simple call for the compiled function.) 
The compilation of the necessary user functions at the beginning can be prescribed 
in the so-called “Context” box of the simulator. The here defined variables behave 
as “global” ones from the point of view of the user-defined functions. They can be 
referred to as “global” variables in the heading (beginning lines) of the user’s 
functions. The “wires” correspond to the traditional function calls via the stack 
making the use of the simulator similar to data flow programming. (The global 
variables can directly be modified by the functions without the use of any “wire”.) 

In the control calculation of the “desired” and measurement of the “realized” joint 
coordinate accelerations was needed. Within the frames of Scicos this can be done 
by averaging these signals for finite time-intervals using event driven integrators 
that reset their initial value to zero when the appropriate event happens. (The 



length of the time-interval can be obtained by integrating the constant function 1.) 
In the possession of the averaged joint coordinate accelerations the special 
symplectic matrices described in (5) and (6) can be updated as a global variables. 
The values of the desired joint coordinate accelerations are kept constant due to a 
“Vector Shift Register” during the integration. Therefore the cycle-time of the 
external adaptive loop approximately corresponds to the duration of this 
integration plus that of the necessary calculations. 

Figure 3 
The operation of the adaptive controller: 1st box the norm of the adaptive signal Sn-I; 
2nd box: the generalized forces [in Nm for Q1 (black) and Q2 (blue), N for Q4 (green) and 0 

for q3 (red)]; 3rd box: the tracking errors [in rad for q1 (black) and q2 (blue), m for q4 
(green)]; 4th box: the nominal trajectory [in rad for q1 (black) and q2, (blue), m for q4 (red)] 

vs. time [s]. 

In Fig. 3 the operation of the adaptive controller can be seen. (Each simulation 
was carried out with the default settings of Scicos prescribing 0.0001 for the 
integrator absolute tolerance, 1D-06 for the integrator relative tolerance, and 1D-
10 value for the tolerance on time.) The considerable improvement in trajectory 
tracking as time passes by is apparent. 



Figure 4 
The operation of the adaptive controller: 1st box: the phase-space of the uncontrolled degree 
of freedom [m, m/s]; 2nd box: zoomed excerpt of the generalized forces, units as in Fig. 3; 

3rd box: zoomed excerpts of the tracking errors, units as in Fig. 3; 4th box: phase space of q1 
[rad, rad/s]; 



The phase space of the uncontrolled degree of freedom and q1 is given in Fig. 4 
together with the zoomed excerpts of the graphs of the generalized forces. Due to 
the limited amplitude of the vibration of the unmodeled degree of freedom its 
presence is rather traceable in the fluctuation of the generalized forces needed for 
controlling the motion of the 1st arm and the linear displacement of the arm. 

Conclusions 

At the end of the Summer of 2004 INRIA issued its SCILAB 3.0 containing an 
advanced numerical simulation tool called “Scicos”. Due to it new prospects were 
opened for making “professional” and in the same time “convenient” simulations 
for studying the sensitivity of the novel adaptive control developed at the 
Budapest Tech. A simple but lucid paradigm, a cart conveying an asymmetric 
double pendulum system also having an uncontrolled and unmodeled internal 
degree of freedom was chosen to be controlled. The simulator well demonstrated 
that the novel adaptive approach seems to be applicable, it is able to learn the 
varying dynamic properties of the subsystem to be controlled by it. The details of 
the dynamic coupling responsible for the varying dynamic properties were also 
well revealed. Scicos seems to be a reliable, convenient and accurate simulation 
tool for similar investigations in the future. 
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