
Compiling the Process Functional Programs

Peter Václavík, Ján Kollár, Jaroslav Porubän, Miroslav
Vidiščák
Department of Computers and Informatics, Technical University of Košice,
Slovakia
Peter.Vaclavik@tuke.sk, Jan.Kollar@tuke.sk, Jaroslav.Poruban@tuke.sk,
Miroslav.Vidiscak@tuke.sk

Abstract: This paper briefly describes process functional language compiler architecture.
Process functional language is an experimental functional language with imperative
features like memory cell variables. The main parts of the process functional language
compiler are presented with short description and examples. Current implementation of
PFL compiler comprises a algebraic types, primitive functions, operators, pattern
matching, variable environment, abstract data types and process functional program
profilation.

Keywords: functional programming, translation, process functional paradigm, program
transformations1

1 Introduction

The Process functional language PFL was developed at Department of Computers
and Informatics during the past few years [5], [7]. The main idea of the language
design is to decrease a gap between imperative and functional languages with
respect to positive characteristics of both programming paradigms. New
constructions were defined during the language design process: environment
variable, loop comprehension and spatial types. They differ PFL from other
special functional languages.

The programming approach is functional without assignments and other state
change statements. All imperative programs can be transformed to process
functional programs [6].

1 This work was supported by VEGA Grant No. 1/1065/04 - Specification and

implementation of aspects in programming.

Main constructs in process functional language are unit type, environment
variables and processes.

Unit type - is marked by symbol (). The same symbol is used for the only one unit
type value - control value (). Semantics of this control value is different than
semantics of a data value. Control value represents control flow in program.

Environment variable - is a memory cell like in an imperative language. The
main difference between imperative program variable, represented as a memory
cell, and an environment variable in PFL are in the concept of variable application
with respect to accessing and updating the variable. In PFL, the application is

• static (visible to programmer) binding of environment variable - memory
cell to process argument defined by process signature (process type
definition),

• implicit (invisible to programmer) environment variables application -
operation to process argument (type of operation is depended on argument
type).

The programmer does not affect the state directly using special operations but it is
done implicitly by process application. The environment variable v is defined as
follows:

:: , where | ()v T T T T→ →% %

The environment variable access operation is defined as

v()
()::
=
→

v
Tv

The v is a value of type T stored in environment variable v. The environment
variable update operation is defined as

x
::
=
→

xv
TTv

Next assertions about environment variable are true:

• Value type of environment variable application is always data value, not a
spatial or control one.

• Environment variable is accessed or updated indirectly by process
application.

• Application of control value on environment variable is equivalent to
variable access operation in imperative languages.

• Application of data value on environment variable is equivalent to
assignment of value to variable in imperative languages.

More detailed information about environment variable can be found in papers [5]
[8].

Process - definition differs from function definition in pure functional language
only by its type definition. Function is called process in process functional
language if its type signature comprises one of the following forms.

• Process signature comprises unit type as its argument or value type, for
example:

()():: →→ Tf

where f is a process with two arguments (type of first one is unit type, the
second one is a data type T) and return value is type of unit type.

• Process type definition comprises at least one argument type in a form v T,
for example:

TaTvf →→::

It is possible to combine both cases in type definition of a process.

()():: →→Tvf

Next example presents definition of PFL process pf. Process type definition
comprises first argument in the form a T, where a is name of an environment
variable and T is its type.

::
exp

pf a T T T
pf x y

→ →
=

The value of environment variable a can be update by application of the process pf
to values val1 and val2. This case is shown in the Figure 1 (a). In the next case, an
environment variable is accessed as it is shown in the Figure 1 (b). Here, first
argument is a unit value and the variable environment value is accessed.

(a)

exp

val :: T2val :: T1

a :: T T

exp exp

(b)

exp

val :: T() :: ()

a :: () T

exp exp

- data value
- data value stored in an environment variable
- control value

Figure 1
Instances of environment variable access and update.

2 Compiler architecture

The compiler architecture is inspired by the Haskell and Gopher compiler [3] [4].
The modular compiler architecture is shown in the Figure 2. This architecture is
defined by phases of the process functional program compiling. Actual version of
process functional compiler has already implemented these features:

Program

Lexical
analyse

Syntactic
analyse

Code
transformations

Code
transformations

to corePFL

1

1

Type
checking

Process
applications

transformation

Static
analyse

Code
generation

(Haskell, Java)

Code
generation

for profilation

Profilation in
evaluation time

Dictionary
completion

Figure 2

PFL compiler architecture.

• Algebraic types. Monomorphic and polymorphic algebraic type definitions
are supported. Syntax and semantic is the same like in Haskell.

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b)

• Primitive functions. It is possible to define the primitive function
explicitly. Primitive functions extend the usability of process functional
language and make PFL general-purpose language for solving wide area of
problems. Primitive function type definition can be placed in the source
code of PFL program and implementation can be done in other platform

specific programming language, depending on the programmer
requirements.

primitive plusInteger :: Integer -> Integer -> Integer

• Operator definition is the same like in other functional languages.

• Global function definition.

• Pattern matching.

• Global variable environment is defined by process definitions at a global
level. If the same environment variable name is used in different processes,
the environment variable is shared between these processes.

• Abstract data type definition with object-oriented approach. It is
possible to define abstract types (type classes and its instances) like in
Haskell. In contrast to Haskell multiparameter type class definition are
supported. The object variable environment bounded to concrete type class
is created from process type definitions defined in the class. More
information about abstract types see [11].

• Process functional program profilation support is implemented within the
compiler for identifying execution bottlenecks of the program - parts of a
program where much of time and space is used. Syntactic construction
label provides feedback to the programmer about resource utilization,
relating information gathered from program runtime back to the source
code in well-defined manner. More information about PFL program
profilation can be found in [10].

These constructions are fully supported with respect to process functional
paradigm definition. Next subsections describe basic parts of PFL compiler.

2.1 Lexical Analysis

In the lexical analysis phase, lexical units of process functional program are
identified (keywords, identifiers, numbers, etc.). We can divide lexical units into
two groups:

• Basic lexical units - basic lexical units defined by core PFL.

• Extensions of core PFL for profiling and object oriented PFL
constructions (abstract type - class, instance and ⇒; etc.)

2.2 Syntactic Analysis

This phase covers the source program syntax checking. Furthermore, the program
translation tree (see Figure 3) is generated from the input source program. Output
from syntax analysis is:

• list of type constructors,

• list of constructors,

• list of type classes,

• list of instances,

• syntactic tree for all expressions within the program.

2.3 Code Transformations

This phase solves next basic code transformation:

• expression transformation according to operator associativity,

• expression transformation consideting operator priority,

• abstract types and object usage transformations.

Main
node

CD1 CDn

ID1 IDm

pf 1
1 pf k

1

pf 1
pf r

pf k
1 - syntactic tree of process or function pf k

1

CD1 - node representing class declaration

IDm - node representing instance declaration

Type
classes

Instances

Global
processes and
functions

Figure 3

Instances of environment variable access and update.

2.4 Code Transformation to CorePFL

In this phase, all PFL syntactic constructions are transformed to corePFL
constructions. The corePFL is the minimal subset of PFL constructions for
expressing all other PFL constructions. Abstract syntax of the corePFL is
presented on Figure 4. It comes out the Haskell natural semantics [9]. There are
already defined transformations schemes from PFL to corePFL. As an example of
transformation from PFL to corePFL is if-then-else expression transformation
provided.

{ }321321 ;]][[eFalseeTrueeeeeTif →→= of caseelsethenif

{ }
Primitive

Case ofcase

lication App
rConstructo

Update
ccess A

Primitive
Function
Variable

main

ex

exxCe

ee
eeC

ey
y

ee
f
xe

DefefDef
eDefP

n

iiii

n

m

.|

|

|
|
|

()|
|
|
::
|
::
::

11

21

1

21

λ

ε

=
→

⊕

=

==
==

K

K

Figure 4
Abstract syntax of corePFL.

2.5 Type Checking, Context Checking

This is a one of key phases of PFL program translation. A unification type rules
are applied on every expression, checking for type correctness of a program. Type
checking is divided into few steps:

• Process or function signature derivation - using unification rules the
signature for the process or function is derived from syntactic tree.

• Explicit signature definition - derived signature must by unified with user
one.

• Specific checking rules - for some construction the specific type checking
rules are defined. For example, the abstract types need to be checked for
superclass declaration existence, type class hierarchy, instance declaration
overlaying and instance declaration of superclass overlaying).

In context checking compiler looks for:

• If all functions/processes specified with type definitions have their
definitions.

• If the context of a variable can be derived.

• If the context of an environment variable can be derived.

• If all algebraic types have their definitions.

2.6 Process Application Transformation

Process applications are transformed to a form, in which the environment variable
update or access operation are implicitly embedded in expression. On the Figure 5
the transformation of process p application is shown. In the first case (a), process p
is applied to control value (), which is similar to imperative access operation.
Second case (b) presents application of a process p on value of Int data type,
which is similar to imperative assignment operation.

2.7 Dictionary Completion

In this phase the rules of accessing the process or function definition from
available dictionary (the result of instance declaration translation) are included to
node of process or function identifier. This rules comes out the Haskell language
[2]. Accessible scopes of dictionaries depends on a scope of process or function
definition:

• Type class - context of instance declaration, actual instance declaration
(and superclasses dictionary too) and context of function or process type
definition.

• Global process or function - the context of function or process type
definition.

()::()

p::a Int->Int

@

p::a Int->Int

@

access a

exp::Int

p::a Int->Int

@

exp::Int
p::a Int->Int

@

update a

(a)

(b)

- syntactic tree of expression

Figure 5
Update and access operation embedding.

2.8 Static Analysis

This step is essential for program optimization. Static analysis is used for
gathering information from source program about program runtime behavior
without need for program execution. Static analysis is done in compiler by control
flow analysis and side effects analysis. Information acquired from the static
analysis are used in code generator.

2.9 Code Generation

The last phase of a program compiling is code generation. Nowadays it is possible
to generate the code to Haskell or Java. However, it is possible to expand the
collection of target languages due to modular structure of a compiler.
Implementation of generator to C language with MPI support is now in progress.

2.10 Profilation

This phase consists of two steps. First one is PFL program code generation with
profiling support. The second step is gathering the information about resource
utilization during the program runtime. If the compiler is adjusted to program
profiling mode then the special code generator is selected. Profiling generator
marks generated code for profiling.

Implemented process functional program profiler nowadays supports five types of
profiles:

• frequency count profile,

• time profile,

• heap profile,

• maximum requirements heap profile,

• variable access/update profile.

Program profile is created during the execution using the sampling method.
Execution is interrupted in specified time intervals (predefined value is 10
milliseconds) and information about used resources are collected and attributed to
the current labeled center. Program profiling increases execution time
approximately from 5 to 10% depending on the concrete program and labeling.

Conclusions

This paper is not concerned on particular problem solving. It brings the general
overview of PFL programming language and its features. Main program
compilation phases are described in the paper. Presented compiler architecture is
already implemented. However, the presented architecture and PFL constructions
may not be final one. For example, the optimization phase is absent in the
compiler. Our current work is aimed to solving problems of parallel execution of
process functional programs with respect to underlying architecture and
implementaition of visual tools for modelling program behaviour. Our future work
will be oriented to integration of aspect-oriented programming [1] and process
functional programming extending the compiler architecture.

References

[1] Avdicausevic, E., Lenic, M., Mernik, M., Zumer, V.: AspectCOOL: An
experiment in design and implementation of aspect-oriented language,
ACM SIGPLAN not., December 2001, Vol. 36, No.12, pp. 84-94

[2] Hall, C., Hammond, K., Jones, S. P., Wadler, P.: Type classes in Haskell,
European Symposium On Programming, LNCS 788, Springer Verlag, pp.
241-256, 1994

[3] Jones, M. P.: The implementation of the Gopher functional programming
system, Research Report YALEU/DCS/RR-1030, May 1994

[4] Jones, S. L. P., Hughes, J.: Report on the Programming Language Haskell
98 A Non-strict, Purely Functional Language, pp. 163, February 1999

[5] Kollár J.: Process Functional Programming, Proc. ISM'99, Rožnov pod
Radhoštěm, Czech Republic, April 27-29, 1999, pp. 41-48

[6] Kollár J.: PFL Expressions for Imperative Control Structures, Proc. of
Computer Engineering and Informatics Scientific conference with
International participation, Oct. 14-15, Herľany, Slovakia, ISBN 80-88922-
05-4, 1999, pp.23-28

[7] Kollár J.: Object Modelling using Process Functional Paradigm, Proc. 34th
Spring International Conference MOSIS 2000 - ISM 2000 Information
Systems Modelling, Rožnov pod Radhoštěm, Czech Republic, Máj 2-4,
2000, ACTA MOSIS No. 80, ISBN 80-85988-45-3, pp. 203-208

[8] Kollár J., Porubän J., Václavík P., Vidiščak M.: Lazy State Evaluation of
Process Functional Programs, Proceedings of the Conference “Information
Systems Modelling” ISM’02, Rožnov pod Radhoštěm, ISBN 80-85988-70-
4, 2002, pp. 165-172

[9] Launchbury, J.: A natural semantics for lazy evaluation, In Proceedings of
the 20th ACM Conference on Principles of Programming Languages, pp.
144-154, 1993

[10] Porubän J.: Time and space profiling for process functional language,
Proceeding of the 7th Scientific Conference with International Participation
Engineering of Modern Electric Systems '03, Felix Spa, Oradea, 1223-
2106, 2003, pp. 167-172

[11] Václavík P.: The Fundamentals of a Process Functional Abstract Type
Translation, Proceeding of the 7th Scientific Conference with International
Participation: Engineering of Modern Electric '03 Systems, Felix Spa,
Oradea, ISSN-1223-2106, 2003, pp. 193-198

