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Abstract: This paper briefly describes process functional language compiler architecture. 
Process functional language is an experimental functional language with imperative 
features like memory cell variables. The main parts of the process functional language 
compiler are presented with short description and examples. Current implementation of 
PFL compiler comprises a algebraic types, primitive functions, operators, pattern 
matching, variable environment, abstract data types and process functional program 
profilation. 
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1 Introduction 

The Process functional language PFL was developed at Department of Computers 
and Informatics during the past few years [5], [7]. The main idea of the language 
design is to decrease a gap between imperative and functional languages with 
respect to positive characteristics of both programming paradigms. New 
constructions were defined during the language design process: environment 
variable, loop comprehension and spatial types. They differ PFL from other 
special functional languages. 

The programming approach is functional without assignments and other state 
change statements. All imperative programs can be transformed to process 
functional programs [6]. 

                                                           
1 This work was supported by VEGA Grant No. 1/1065/04 - Specification and 

implementation of aspects in programming. 



Main constructs in process functional language are unit type, environment 
variables and processes. 

Unit type - is marked by symbol (). The same symbol is used for the only one unit 
type value - control value (). Semantics of this control value is different than 
semantics of a data value. Control value represents control flow in program. 

Environment variable - is a memory cell like in an imperative language. The 
main difference between imperative program variable, represented as a memory 
cell, and an environment variable in PFL are in the concept of variable application 
with respect to accessing and updating the variable. In PFL, the application is 

• static (visible to programmer) binding of environment variable - memory 
cell to process argument defined by process signature (process type 
definition), 

• implicit (invisible to programmer) environment variables application - 
operation to process argument (type of operation is depended on argument 
type). 

The programmer does not affect the state directly using special operations but it is 
done implicitly by process application. The environment variable v is defined as 
follows: 

:: , where | ()v T T T T→ →% %  

The environment variable access operation is defined as 

v()
()::
=
→

v
Tv

 

The v is a value of type T stored in environment variable v. The environment 
variable update operation is defined as 

x
::
=
→

xv
TTv

 

Next assertions about environment variable are true: 

• Value type of environment variable application is always data value, not a 
spatial or control one. 

• Environment variable is accessed or updated indirectly by process 
application. 

• Application of control value on environment variable is equivalent to 
variable access operation in imperative languages. 



• Application of data value on environment variable is equivalent to 
assignment of value to variable in imperative languages. 

More detailed information about environment variable can be found in papers [5] 
[8]. 

Process - definition differs from function definition in pure functional language 
only by its type definition. Function is called process in process functional 
language if its type signature comprises one of the following forms. 

• Process signature comprises unit type as its argument or value type, for 
example: 

()():: →→ Tf  

where f is a process with two arguments (type of first one is unit type, the 
second one is a data type T) and return value is type of unit type. 

• Process type definition comprises at least one argument type in a form v T, 
for example: 

TaTvf →→::  

It is possible to combine both cases in type definition of a process. 

()():: →→Tvf  

Next example presents definition of PFL process pf. Process type definition 
comprises first argument in the form a T, where a is name of an environment 
variable and T is its type. 

::
exp

pf a T T T
pf x y

→ →
=

 

The value of environment variable a can be update by application of the process pf 
to values val1 and val2. This case is shown in the Figure 1 (a). In the next case, an 
environment variable is accessed as it is shown in the Figure 1 (b). Here, first 
argument is a unit value and the variable environment value is accessed. 



(a)

exp

val  :: T2val  :: T1

a :: T     T

exp exp

(b)

exp

val :: T() :: ()

a :: ()     T

exp exp

- data value
- data value stored in an environment variable
- control value  

Figure 1 
Instances of environment variable access and update. 

2 Compiler architecture 

The compiler architecture is inspired by the Haskell and Gopher compiler [3] [4]. 
The modular compiler architecture is shown in the Figure 2. This architecture is 
defined by phases of the process functional program compiling. Actual version of 
process functional compiler has already implemented these features: 
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Figure 2 

PFL compiler architecture. 

• Algebraic types. Monomorphic and polymorphic algebraic type definitions 
are supported. Syntax and semantic is the same like in Haskell. 

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b) 

• Primitive functions. It is possible to define the primitive function 
explicitly. Primitive functions extend the usability of process functional 
language and make PFL general-purpose language for solving wide area of 
problems. Primitive function type definition can be placed in the source 
code of PFL program and implementation can be done in other platform 



specific programming language, depending on the programmer 
requirements. 

primitive plusInteger :: Integer -> Integer -> Integer 

• Operator definition is the same like in other functional languages. 

• Global function definition. 

• Pattern matching. 

• Global variable environment is defined by process definitions at a global 
level. If the same environment variable name is used in different processes, 
the environment variable is shared between these processes. 

• Abstract data type definition with object-oriented approach. It is 
possible to define abstract types (type classes and its instances) like in 
Haskell. In contrast to Haskell multiparameter type class definition are 
supported. The object variable environment bounded to concrete type class 
is created from process type definitions defined in the class. More 
information about abstract types see [11]. 

• Process functional program profilation support is implemented within the 
compiler for identifying execution bottlenecks of the program - parts of a 
program where much of time and space is used. Syntactic construction 
label provides feedback to the programmer about resource utilization, 
relating information gathered from program runtime back to the source 
code in well-defined manner. More information about PFL program 
profilation can be found in [10]. 

These constructions are fully supported with respect to process functional 
paradigm definition. Next subsections describe basic parts of PFL compiler. 

2.1 Lexical Analysis 

In the lexical analysis phase, lexical units of process functional program are 
identified (keywords, identifiers, numbers, etc.). We can divide lexical units into 
two groups: 

• Basic lexical units - basic lexical units defined by core PFL. 

• Extensions of core PFL for profiling and object oriented PFL 
constructions (abstract type - class, instance and ⇒; etc.) 



2.2 Syntactic Analysis 

This phase covers the source program syntax checking. Furthermore, the program 
translation tree (see Figure 3) is generated from the input source program. Output 
from syntax analysis is: 

• list of type constructors, 

• list of constructors, 

• list of type classes, 

• list of instances, 

• syntactic tree for all expressions within the program. 

2.3 Code Transformations 

This phase solves next basic code transformation: 

• expression transformation according to operator associativity, 

• expression transformation consideting operator priority, 

• abstract types and object usage transformations. 
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Figure 3 

Instances of environment variable access and update. 

2.4 Code Transformation to CorePFL 

In this phase, all PFL syntactic constructions are transformed to corePFL 
constructions. The corePFL is the minimal subset of PFL constructions for 
expressing all other PFL constructions. Abstract syntax of the corePFL is 
presented on Figure 4. It comes out the Haskell natural semantics [9]. There are 
already defined transformations schemes from PFL to corePFL. As an example of 
transformation from PFL to corePFL is if-then-else expression transformation 
provided. 
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Figure 4 
Abstract syntax of corePFL. 

2.5 Type Checking, Context Checking 

This is a one of key phases of PFL program translation. A unification type rules 
are applied on every expression, checking for type correctness of a program. Type 
checking is divided into few steps: 

• Process or function signature derivation - using unification rules the 
signature for the process or function is derived from syntactic tree. 

• Explicit signature definition - derived signature must by unified with user 
one. 

• Specific checking rules - for some construction the specific type checking 
rules are defined. For example, the abstract types need to be checked for 
superclass declaration existence, type class hierarchy, instance declaration 
overlaying and instance declaration of superclass overlaying). 

In context checking compiler looks for: 

• If all functions/processes specified with type definitions have their 
definitions. 



• If the context of a variable can be derived. 

• If the context of an environment variable can be derived. 

• If all algebraic types have their definitions. 

2.6 Process Application Transformation 

Process applications are transformed to a form, in which the environment variable 
update or access operation are implicitly embedded in expression. On the Figure 5 
the transformation of process p application is shown. In the first case (a), process p 
is applied to control value (), which is similar to imperative access operation. 
Second case (b) presents application of a process p on value of Int data type, 
which is similar to imperative assignment operation. 

2.7 Dictionary Completion 

In this phase the rules of accessing the process or function definition from 
available dictionary (the result of instance declaration translation) are included to 
node of process or function identifier. This rules comes out the Haskell language 
[2]. Accessible scopes of dictionaries depends on a scope of process or function 
definition: 

• Type class - context of instance declaration, actual instance declaration 
(and superclasses dictionary too) and context of function or process type 
definition. 

• Global process or function - the context of function or process type 
definition. 
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Figure 5 
Update and access operation embedding. 

2.8 Static Analysis 

This step is essential for program optimization. Static analysis is used for 
gathering information from source program about program runtime behavior 
without need for program execution. Static analysis is done in compiler by control 
flow analysis and side effects analysis. Information acquired from the static 
analysis are used in code generator. 

2.9 Code Generation 

The last phase of a program compiling is code generation. Nowadays it is possible 
to generate the code to Haskell or Java. However, it is possible to expand the 
collection of target languages due to modular structure of a compiler. 
Implementation of generator to C language with MPI support is now in progress. 



2.10 Profilation 

This phase consists of two steps. First one is PFL program code generation with 
profiling support. The second step is gathering the information about resource 
utilization during the program runtime. If the compiler is adjusted to program 
profiling mode then the special code generator is selected. Profiling generator 
marks generated code for profiling. 

Implemented process functional program profiler nowadays supports five types of 
profiles: 

• frequency count profile, 

• time profile, 

• heap profile, 

• maximum requirements heap profile, 

• variable access/update profile. 

Program profile is created during the execution using the sampling method. 
Execution is interrupted in specified time intervals (predefined value is 10 
milliseconds) and information about used resources are collected and attributed to 
the current labeled center. Program profiling increases execution time 
approximately from 5 to 10% depending on the concrete program and labeling. 

Conclusions 

This paper is not concerned on particular problem solving. It brings the general 
overview of PFL programming language and its features. Main program 
compilation phases are described in the paper. Presented compiler architecture is 
already implemented. However, the presented architecture and PFL constructions 
may not be final one. For example, the optimization phase is absent in the 
compiler. Our current work is aimed to solving problems of parallel execution of 
process functional programs with respect to underlying architecture and 
implementaition of visual tools for modelling program behaviour. Our future work 
will be oriented to integration of aspect-oriented programming [1] and process 
functional programming extending the compiler architecture. 
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