
I want to work. For it is battle enough
Having a past such as this to confess...

citation from Attila József: “By the Danube” 
A. DeGaetano DHC acceptance talk



Modelling, estimation and control

Andrea De Gaetano
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Plan of the talk:

● two stories
● a quick overview of 35 years
● the future
● conclusion: M, E & C
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two stories
(20 minutes)
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the Pancreas
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Langerhan’s Islets
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the glucose-insulin control system
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successful control
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Bolie 1961

● First attempt to understand actual time-
concentration points in plasma.

                                                                    

● Introduces plasma insulin and HGO
● Problems?
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qualitative analysis reveals ...

● the actual model functional form, which allows negative 
solutions to appear, must have something in it which goes 
against the physiology as we think we know it

● Bolie: no matter how little glucose there is in blood, by 
increasing insulin we would be able to make the tissues extract 
as much more as we wanted, linearly with insulin levels. 

● Mechanism seems wrong. Better to change model.
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Perturbation experiments
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MM 1979/1981
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SI

● For infinite time, SI = b3/b2

● in one third to one half of studies on obese subjects SI 

cannot be estimated, due to insufficient variation of glucose 
decrement with insulin. 

● An IVGTT obvious for insulin resistance (high constant 
insulin levels) yields no estimable SI.
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Structural problems
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In other words, for any value  b5 < Gb  the system does not admit an 
equilibrium.
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Estimation problems
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The SDM
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SDM characteristics

● Single locally attractive equilibrium at baseline
● Positive, limited solutions
● Global stability guaranteed under conditions on 

parameters
● Physiologically limited pancreatic secretion ability
● Single pass GLS estimation
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SDM vs. MM
 Over 74 subjects with widely varying BMI (20 – 60)● 74 IVGTTs from lean (19), overweight (22), obese (22) and morbidly obese 

(11) subjects
● KxgI from the SDM 

– identifiable (CV < 52%) in 73 out of 74 subjects (one 68%)
– All estimates within physiological limits (1.25 × 10-5   to 4.36 × 10-4 )

● SI from the MM 

– not identifiable in 36 subjects out of 74, with coefficients of variation 
ranging from 52.76 % to 2.3610+9 %

– in 11 subjects estimates doubtfully large (from 3.99 to 890) 
– in 8 subjects estimates very small (≤ 1.5 × 10-6, “zero-SI”) 
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second story: strange insulin secretion

● “Synchronized”   ???
● Ex-vivo glucose perturbation experiments 

(Grodsky 1970’s, Sturis, Porksen, Simon,...)

– constant at different levels
– pulse, micropulse, sinusoid (entrainment)
– step, repeated pulse
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2010/2014: distributed controller hypothesis

● Many (>100K) independent controllers (islets?)
● coupling ONLY through glycemia
● fire-and-refractory (same as neurons, myocardial cells)
● slow adaptation
● GENERATING METAPARAMETERS (size of grain, refractory time, ...)

● close loop with ANY glucose dynamics
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Simon
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Grodsky



Nov 23rd, 2021 Obuda 31

Grodsky, Sturis
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Porksen, IVGTT
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SDM revisited: why does it work?

● ‘Glucose effectiveness’ apparently not needed
● Nonlinear exponent    crucial for good model fit
● Distribution interpretation of    as (related to) the 

derivative of the density of the thresholds?
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threshold distribution interpretation

f
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A quick overview of 35 years 
(5 minutes)
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1986-1989 Baltimore: the Patient State Space
● Coleman, Siegel, Giovannini, Castagneto, Sganga, Nanni, Tacchino
● surgical ICU multi-parametric monitoring (11 original variables)
● clustering: 

– R (reference, compensated)
– sepsis
– metabolic/hepatic insufficiency
– cardiovascular insufficiency
– respiratory insufficiency

● patient trajectories & P(death) by projection onto 5-d StateSpace
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1990-1999 CNR Rome: dicaboxylic acids 1/2

● Mingrone, Tataranni, Raguso

● standard PK (nonlin ODE)
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1990-1999 CNR Rome: dicaboxylic acids 2/2
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1996 MinMod!

Am.J.Physiol. 1996

● estimation!
● NONMEM -> 1985 Sheiner 

nlme algorithm
● Assumed MinMod
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2000 MinMod?
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2000 in general: stability?

Mathematical and Computer Modelling 2000 pp 41–51
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2002 in the meantime: Calorimetric Chamber
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2005/2008 / 2010  using and estimating SDE’s
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2005 ... more glucose and insulin
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... more glucose and insulin
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2006 glucose and insulin: SDE’s
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2007 finally a good model for the IVGTT
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2007 & following:  CONTROL!
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more control...
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more control...
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2008 diabetes progression
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2010/2014: a distributed controller theory



Nov 23rd, 2021 Obuda 56

2019...: compact is small distributed

 Comparison of the generating, extended-model parameter values with the
obtained compact model estimates shows that the functional form of the nonlinear insulin-
secretion term, empirically found to be necessary for the compact model to satisfactorily fit
clinical observations, captures the pancreatic reserve level of the simulated virtual patients.
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2021...: and can make distributed smaller
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2014... meals & control of appetite
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2021... meals & control of appetite
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2000-2021 modelling, modelling, modelling...
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2000-2021 modelling, modelling, modelling...
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2000-2021 modelling, modelling, modelling...
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2000-2021 modelling, modelling, modelling...



Nov 23rd, 2021 Obuda 64

the future
(15 minutes)
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2021 ... FDE’s and CGM
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FD Op’s      Grünwald-Letnikov
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FD Op’s      Caputo
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 reduce to the usual integer integro-differential operators 
for  a = m

 are linear for any  a

 

 preserve sequential integro-differentiation

Fractional Differential Operators
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for any chosen FD Operator may wish to solve

subject to some initial-value conditions.

Different FD Op’s determine DIFFERENT solutions!

FD Equations
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however it can be shown (Laplace transforms)

 GL easy to compute

 C   takes care of (INTEGER-order) initial conditions

Grünwald-Letnikov  and Caputo
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FDE modeling example: CGM
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next step: FSDE’s
● if we introduce some driving stochastic process (diffusion) 

in addition to the deterministic derivative (drift), we obtain 
a FSDE. May drive such FSDE with different noises...

● Notice that by definition (GL) this FSDE is in any case 
non-local for non-integer a

● The same would happen if adding noise to a delay-
differential equation,   DSDE.
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nonlocal stochastic dynamical systems: ABM’s
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Fishing...



Nov 23rd, 2021 Obuda 83

... but!
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Overall modelling effort

data

preys

data
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Agent Motion & Fishing Model 
(AMoFiM V01.14.02)
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AMoFiM simulation (stochastic)
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another example

from fish population dynamics

to cancer immunity
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Organ On Chip (OOC)
● microfluidic chips

● biological 
(physiochemical) 
environment 

● recreates in vivo 
systems in vitro
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Our preparation

● Treated tumor + leukocytes 
MCA205-WT

● Videos recording positions 
of cells (1 frame q 2 min.)

● Goal: visualize treatment 
effect on migration rate, 
aggregation, inhibition of 
cancer cell proliferation



Nov 23rd, 2021 Obuda 104

Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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Migration Model
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so, now that we have stochastic models...

the question is:

how to estimate the model 
parameters?
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SDE’s: ALL trajectories SAME drift parameters
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 easy case: Y observed is Markovian 
 implies NO hidden variables and NO observation 

error
 Hard but doable if hidden process is markovian

ML Estimation
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Markovian Y
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Markovian Y
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 Generate many trajectories over whole 
timeframe

 compute density at each observation
 assume independent observations and multiply
 OPTIMIZE!

Nonlocal dynamical models: direct MLE
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 SDEs may be nonlocal if underlying process 
non-markovian (FSDE, DSDE by definition)

 ABMs nonlocal if incompletely observed (e.g. 
only position, not inner state) 

local vs. nonlocal stochastic models
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 Generate many trajectories over whole 
timeframe

 compute density at each observation
 assume independent observations and multiply
 OPTIMIZE! cannot 

do!

Nonlocal dynamical models: direct MLE
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Regression

Minimization

Rejection

Ernesto CARRELLA: 
https://carrknight.github.io/abm/
2020/09/22/estimation.html

Estimating nonlocal stochastic models



Nov 23rd, 2021 Obuda 141

Rejection methods: what’s the point?

● MLE means find q such that P(Yo|q) max.
● Cannot do it? OK, next best thing is...
● ... find (correctly) a (large) sample of q  that are 

consistent with Yo, ie. such that s(Y|q) near 
s(Yo), then use the empirical distribution of this 
sample to infer anything you want on q
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Rejection sampling
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Rejection sampling
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Rejection sampling
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Rejection sampling
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!

Rejection sampling



Nov 23rd, 2021 Obuda 147

Approximate Bayesian Computing

easiest algorithm

(there are more sophisticated ones)
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y

Approximate Bayesian Computing

We start with having OBSERVED
some (vector)  y,  which we assume
is being generated by some model
depending stochastically on unknown 
(vector) parameter  q  
               y = y(q)
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f(q)      

y

Approximate Bayesian Computing

Since we do not know the 

distribution  g(q) of  q,  we wish 
to approximate it with the 
empirical distribution of a sample 
of GOOD  qi’s.

We begin with an appropriate 

proposal distribution   f(q) 
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f(q)           qi

y

Approximate Bayesian Computing

 we can generate  qi’s.  from  f(q) 

but... how GOOD are they?
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f(q)           qi

y yi

Approximate Bayesian Computing

 using each  qi  we can generate a 
whole (virtual) sample  yi
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f(q)           qi

y yi

t ti

Approximate Bayesian Computing

and can compute an 
appropriate  statistics 
 t  from both the 
observed data y  and 
from the simulated 
data yi
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f(q)           qi

y yi

t ti di > d°

≤ d°

Approximate Bayesian Computing

the observed t and the  simulated ti  

may be sufficiently similar, or not
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f(q)           qi

y yi

t ti di > d°

≤ d°qk  =  qi

Approximate Bayesian Computing
if t and  ti   are similar 
we accept the candidate 
qi as the k-th new 
sampled q, else we reject 
it...
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f(q)           qi

y yi

t ti di > d°

≤ d°qk  =  qig({qk})

Approximate Bayesian Computing
... thereby building a 
sample {qk}  whose 
empirical distribution 
approximates g(q) 
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 Rejection/ABC: 
 still sensitive to choice of statistics

 high computational cost

but... not so good!
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next goals:

●  Obtain relevant, appropriate statistics from 
the observed dynamics of the biological 
situations

● Devise a formally correct, numerically 
effective method for parameter estimation 
of nonlocal stochastic models
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conclusion: M, E & C
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modeling, estimation and control

idea

research

application
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modeling, estimation and control

● Addressing biological problems prompts 
methodological advances

● Teamwork: numerics, analysis, statistics, 
physiology, optimization

● M, E & C: an eternal golden braid.



          Thank you!
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