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Abstract: A new branch of Soft Computing (SC) designed for the adaptive control of a
special class of non-linear coupled multivariable systems is reported. In contrast to
traditional SC its uniform structures are obtained from certain abstract geometry-
related Lie groups. Adavantages are: a priori known and reduced structure size,
increase in lucidity; simple, short, and explicit algebraic procedure instead of intricate
learning. Disadvantage is: limited circle of applicability. Convergence consideratons
for the new approach are discussed. Simulations are presented for the control of the
inverted pendulum using the generalized Lorentz Group. It is concluded that the
method is promising and probably imposes acceptable convergence requirements in
many practical cases. Copyright @ 2000 IFAC
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1. INTRODUCTION

The basic components of SC was almost completely
developed by the sixties. In our days SC roughly
means a combination of neural networks and fuzzy
conlrollers equipped with several deterministic,
stochastic or combined parameter-tuning or
"learning" methods. Tt is becoming more and more
popular since evades the development of intricate
analytical system models. Instead of that typical
problem classes has been identified for which typical
uniform  SC architectures can be aplied (e.g.
multilayer perceptron, Kohonen-network, Hopfield-
network, etc). Fuzzy systems usually use
membership functions of typical (e.g. trapezoidal,
triangular or step-like, etc.) shapes, and the fuzzy
relations can also be utilized in a standardized way.

The "first phase" of using these methods, that is
identification of the problem class and finding the
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appropriate stucture, normally is relatively easy. The
following phase, i.e. determining the necessary
structure-size and fitting its is far less easy. For
neural networks certain solutions starts from a quite
big initial network and apply dynamic pruning for
getting rid of the "dead" nodes (Reed, 1993). An
alternative method starts with small network, and the
number of nodes is increased step by step (see e.g. in
Fahlmann et af., 1990, and Nabhan et al., 1994). Due
to the possible existence of "local optima" in
"backpropagation training” inadequacy of a given
number of neurons cannot be concluded simply.
Improved “learning methods", also including
stochastic elements, were seruiously improved in the
last decade and released this problem (see e.g. in
Magoulas et al, 1997, Chen et al, 1996,
Kinnenbrock, 1994, Kanarachos et al., 1998).



In spite of this development for strongly coupled non-
linear multivariable systems SC still has considerable
drawbacks. The number of the necessary fuzzy rules,
as well as that of the necessary neurons in a neural
network strongly increases with the degree of
freedom and the intricacy of the problem. External
dynamic interactions on which no satisfactory
information is available for the controller influences
the system’s behavior in dynamic manner. Both the
big structure-size and huge number of tuneable
parameters, as well as the time-varying "goal" still
mean serious problem.

As the cause of the above problems "generality" and
"uniformity" of the "traditional SC structures” can be
identified. This makes the idea rise that several
"simplified" branches of SC could be developed for
narrower problem classes if more specific problem-or
task-features could be identified and taken into
account in the uniform structures applied. The first
steps in this direction were made in the field of
Classical Mechanical Systems (CMSs) (Tar ef al,
1995), while further refinements were published by
Tar et al, 1997, 1999, 2000, on the basis of
principles detailed e.g. by Arnold, 1985. This
approach used the internal symmetry of CMSs, the
ymplectic Group (SG) of Symplectic Geometry. The
"result” of the ‘situation-dependent system
identification" was a symplectic matrix correcting the
effects of the inaccuracy of the rough dynamic modell
used as well as the external dynamic interactions not
modeled by the controller.

From purely mathematical point of view all the
essential steps used in that control can be realized by
other mathematical means than symplectic matrices.
SG can be replaced by other Lie groups defined by
some "fundamental quadratic expression". For
proceeding in this line the convergence properties of
the method must be investigated in the case when the
particular Lie group used in the control does not
describe any internal physical symmetry of the system
to be controlled. These considerations are discussed
in the sequel the results of which are illustrated by
simulation for the control of the inverted pendulum
by the use of the "Generalized Lorentz Group”
(GLG), that is a potential Lie group seeming to be
promising for this purpose.

2. THE CONTROL PROBLEM IN GENERAL

The control task can be formulated as follows: there
is given some imperfect model of the system on the
basis of which some excitation is calculated for a
desired input if as e=¢g(i9). The system has its inverse
dynamics described by the wnknown function
it =y (i%)= f1i9) and resulting in a realized i" instead
of the desired one, id. (In Classical Mechanics these
values are the desired and the realized joint
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accelerations, while the external free forces and the
joint velocities serve as the parameters of this time-
varying function.) Normally we can obtain
information via observation only on the "net”
function f), which is the most cases explicitly varies
in time. In general no practical tools are available for
"manipulating" the nature of this function directly: we
can deform only its actual input i¥* in comparison
with the desired one. The aim is to achive and
maintain the i%=f(il") state. We can directly
manipulate only the nature of the model finction @),
too.

In analogy with the idea of "renormalization", for
solving the above task let us consider a sequence of
certain quadratic matrices {S,} and a series of step-
by-step deformed inputs as

i,; S,[(i,)=i,; i, =S,; ...
=8, i

a2

s S Il ) =13

! > n (lrr—l) ll)’ (])
llHl
If the S,—1I convergence is realized a solution is
obtained for the control problem. The difficulty in
making (1) definite is that it does not have unique
solution for the appropriate matrices, and that in
general the calculation of the inverse of matrices is
very inefficient from computational point of view. It
can be conveniently evaded if special restrictions are
imposed on {S_}: a) let its elements be the members
of some special Lie group outlined in the next
paragraph; this immediately makes the calculation of
the inverse matrices efficient; b) this till doesnot
resolve ambiguity; 1o resolve it further, simply
realizable restrictions must be imposed on the
allowed matrices by bringing them as close to the
identity operator as possible, from a special point of
view. For this purpose forst the potential geometries
and Lie groups are considered in the next paragraph.
Following this the question of convergence will be
discussed.

3. POTENTIAL LIE GROUPS

Let G be a nonsingular quadratic, otherwise arbitrary

constant matrix. Let the set {v‘”} a linearly

independent full set of vectors corresponding to the
dimensions of G. Let this set called "special
according to G" if it satisfies the restrictions

VTGV =G, @)

The elements of this set can form the columns of a
special matrix V satisfying the equation

ViGV=G = V'=G'V'G, 3)

that is the calculation of the inverse of such matrices
in general is very easy and computationally cost-
efficient. These matrices ftrivially form a group,



consequently their inverse and products also are
matrices "of the same kind", that is the member of the
same group. They may have the determinant +1 only.
By the use of the unimodular sub-group built up from
the generators H

GH+H'G=0 (4)

special Lie-groups can be constructed for which the
concept of "being as close to the identical
transformation as possible" gains definite meaning.

0|1
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g= ( L1 i,—-c’), the Orthogonal, the Symplectic, and

(If G 3

corresponds  to I,

the Lorentz Group, can be obtained, respectively, as
the most frequently used groups in Physics --"¢" is
the velocity of light--). The appropriate special sets
are the orthonormal, the symplecticc and the
Lorentzian sets. In these examples G is either
symmetric (I, g) or skew-symmetric (3),
consequently H can be constructed of skew-
symmetric or symmetric J matrices as H=G-'J. All
the considerations formerly used for constructing a
mapping between the observed and the desired
behavior of the controlled system (e.g. Tar et ol
1997, 2000) can trivially be repeated in the case of
such a group, supposing, that at least one element of
the special sets in (2) can be an arbitrary non-zero
vector. For using the "Generalized Lorentz Group”
first a "fictitious dimension” can be "added" to the
DOF dimensional problem. So for G the diagonal
matrix g=<I,....,1,-¢2> can stand. Now let the DOF
dimensional vector f stand for the desired/observed
joint coordinate acceleration, and let us start with the
columns of the DOFxDOF dimensional unit matrix.
In the first step let this set be rigidly so rotated that its
first vector becomes parallel with . It is easy to so
construct the rotation operators that the orthogonal
sub-space of the initial and the goal vectors remains

unchanged. Let e’ ={//["f =f/ /. It is trivial that
the columns of the following matrix form a
generalized Lorentzian set:

e(ﬂ'm I ell] | | e(DﬂF) f (5)
sre o] o [Jrire+

In this solution the physicaily interpreted vector 1 is
accomplished with a fictitious (DOF+1)" component,
and it is placed into the last column of a generalized
Lorentzian. On the basis of the group properties the
proper "Lorentzian" transforming the observed
acceleration into the desired one can be calculated as

r° . 7
Lz[... 1/f”1/cl+ljjg [ f"z/cl+1] e (6)
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For control-technical purposes "c¢" may be an
arbitrary positive constant. This construction is "as
close to the unit matrix as possible” in the sense that
its components contain stretch/shrink only in the one-
dimensional space for which information is available,
and leave the orthogonal sub-spaces unchanged.

4. STABILITY CONSIDERATIONS

The {(i,) — i, requirement can be expressed in more

or less restricted forms. For instance, assume, that
there exists 0<K<1 for which

[{CRES f(i,)-i,| (7

This requirement trivially guarantees the desired
convergence. The question is whether it can be
satisfactory (that is not too rigorous) from practical
point of view. Let the S matrices be written in the
form of S=I+c. The desired convergence now means
that 6, —0. Consider a differentiable function (), and
three points in the space: f(x), f(Sx), and Sf(x)=i,. In
the iteration the present error, and the next error can
be expressed as

£.2K

< K|F(i,.) -1,

H” = f(x) i,

~aof(x)

f(x)‘[l‘(x)+0f(x)]

H" =(x+0x)—i, = (8)
= l'(x)+Dcrx—in =Dox - of(x)

In (8) D correponds to the derivative of I() for near

zero ¢ matrices. For these

[ _
el
x'c™D’ (Dox—20f(x))+f(x)rcrcsf(x) .
r(x) o’of(x)
<K<l
is needed. Now suppose that f(x) is in the same order
of magnitude as x, and that the function is "very flat"
in the sense that its derivative D is very small. In this

case the first term in the numerator of (15) can be
negligible in comparison with the second one and the
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additional requirement x"6"D"cf(x) > 0 may lead to

the desired convergence. To show that this does not
seem to be too irrealistic in many physical cases,
consider e.g. CMSs in which x corresponds to the
joint acceleration and

£(x)=M"Mx+M"(b—b) = Ax +c (10)

in which M and b correspond to the model inertia
and the Coriolis plus gravitational terms,
respectively, while their counterparts denoted by tilde
correspond to the real data. With small M, that is
with under-estimated model inertia, and a model term
b which can be arbitrarily set, the fulfillment of this
requirement is not hopeless. For instance, if M=MI,
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Fig. 1. Comparison of the exact CTC, the non-
adaptive, and the adaptive control with
Lorenzians

where M is a positive scalar, the appropriate term in
(9) originating from b has the form of

-1 L -t :

aM(M Gx) U(M cx) if b = aox (11)
where « is real number. It is known only that the real
invrse inertia matrix is positive definite (its concrete
value is unknown), and ¢ is known in the control. By
changing the sign of « the effect on the convergence
can be monitored, while its absolute value can also be
manipulated. In the next paragraph simulation
examples are presented for the most "popular”
paradigm, the control of the inverted pendulum.

5. SIMULATION RESULTS

The inverted pendulum has the usual structure with
one linear and one rotational degree of freedom. First
three kind of control are compared: a kinematically
prescribed PD control with the exact dynamic model,
the same kinematical control with the rough dynamic
model without and with adaptation. (c=1 was chosen
in the simulations; instead of varying it, a weighting
Sactor w=1000 was chosen for "scaling" the joint
accelerations (via division) before putting them into
the Lorentzians. The proper part of the resulting
Lorentzian was multiplied by this factor before using
it in the control.) In Fig. 1 typical results are given
regarding trajectory reproduction. It is evident that
considerable adaptivity was achieved and that the
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Fig. 2. The effect of the weight factor on the quality
of the adaptive control joint coordinate errors and
weighted desired accelerations

adaptive control well approaches the exact CTC
contro. Fig. 2 reveals that the quality of adaptivity
considerably depends on the weighting factor and that
it is advantageous if the "physically interpreted part"
in the genberalized Lorenztians is comparable in
norm with the value c¢=1. This observation is
confirmed for slow required motion, too, according to
Fig. 3.
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Fig. 3. The effect of the weighting factor for very
slow motion along the same path as on Fig.1-2.



To reveal technical details in Fig. 4 the generalized
forces to be exerted by the pendulum's drives, the
square root of the convergence ratio in (9), the norm
of the appropriate generalized Lorentzians are
displayed for the fast motion and adaptive control.
The norms of the Lorentzians are not constant but
they are very close to the norm of the identity
transformation of the 3x3 matrix (21,732) revealing
that in the iteration the S matrices were really close to
the identity transformation. The figures reveal that
the K<I restriction is too rigorous in the practice. In
spite of the control sections in which the joint
acceleration error is not monotone decreasing the
system still is kept at bay. It can be interpreted as
follows: though the joint accelerations not always are
exactly the same as it is prescribed by the "kinematic
PD control", the actually achieved accelerations
makes the system follow the nominal trajectory with
good accuracy. This supposition is proved via Fig. §
for a slower motion along the same trajectory. The
order of magnitude of the desired joint coordinate
accelerations is between 1000 and 4000 units, while
their error is between 0 and 60 units.

6. CONCLUSIONS

In this paper the possibility of developing a particular
special branch of Soft Computing was investigated in
which the uniform structures to be used may originate
from different abstract Lie-groups. The new approach
has two essential advantages in comparison with the

“traditional means" of Soft Computing:

e The structure-size and the number of the free
parameters is uniquely determined by the degree
of freedom of the system to be controlled and the
particular group chosen;

e Machine learning can be realized via simple,
deterministic, definite algebraic steps limited in
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the motion in Figs. 1-2,
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number; it is void of the problem of local optima.

The convergence properties of the learning algorithm
were investigated in general. A possible particular
criterion was suggested which was found to be met in
practical cases as classical mechanical systems’
control.

The applicability of the approach was demonstrated
via simulation in the case of the inverted pendulum,
controlled by the use of the Generalized Lorentz
Group. It was found that the criterion suggested is
even too rigorous for the real needs of adaptivity and
it may be released in the future.

It can be expected that the here presented
considerations can be extended to a wider class than
the control of mechanical systems. In general seeking
for different convergence criteria for the learning
seems to be expedient.
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