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Abstract: The paper investigates the possibility of modeling the highly nonlinear and very 
complex Sorensen model, [1], of Type 1 diabetic patients using the polytopic LPV modeling 
possibility. It is illustrated that the LPV model is working correctly only in the considered 
polytope region, but inside it is approximating well the nonlinear model. 
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1 Introduction 

Nowadays health experts refer to diabetes mellitus as the disease of the future. 
According to the statistics of the World Health Organization (WHO) an increase 
of the adult diabetes population from 4% (in 2000, meaning 171 million people) to 
5.4% (366 million worldwide) is predicted by the year 2030, [2]. 

From engineering point of view, the treatment of diabetes mellitus can be 
represented by an outer control loop, to replace the partially or totally deficient 
blood-glucose-control system of the human body. However, the blood-glucose 
control is a diffcult problem to be solved. One of the main reasons is that patients 
are extremely diverse in their dynamics and in addition their characteristics are 
time-varying. Due to the inexistence of an outer control loop, patients are 
regulating their glucose level manually. Based on the measured glucose levels 
(obtained from extracted blood samples), they decide on their own what is the 
necessary insulin dosage to be injected. Although, this process is supervised by 
doctors (diabetologists), mishandled situations often appear. Hyper- (deviation 
over the basal glucose level) and hypoglycemia (deviation under the basal glucose 
level) are both dangerous cases, but on short term the latter is more dangerous, 
leading for example to coma. 
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To design an appropriate control, an adequate model is necessary. In the last 50 
years several models appeared. The mostly used and also the simplest one proved 
to be the minimal model of Bergman, [3], [4], but its shortcoming is its big 
sensitivity to variance in the parameters. Therefore, extensions of this minimal 
model have been proposed [5], [6], [7], [8], trying to capture the changes in patient 
dynamics of the glucose-insulin interaction, particularly with respect to insulin 
sensitivity, or even the mixed meal characteristics, [9]. Other more general models 
appeared, [10], but the most complicated and detailed one proved to be the model 
of Sorensen, [1]. 

Due to its comlexity, only few researchers have investigated the modeling and 
control of the Sorensen model. Mostly linear robust H∞ and MPC control methods 
appeared, [11], [12]. In this paper, the authors have been investigating the LPV 
modeling possibility, which deals directly with the non-linear properties of the 
Sorensen model. 

2 The Sorensen Model for Type I Diabetic Patients 

The glucose-insulin system of the human body used in this work is based on 
Sorensen model modified by [11]. Its compartmental representation is given by 
Figure 1. The eight equations for the glucose part are given below: 
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Figure 1 

Compartmental representation of the Sorensen model, [11] 
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The seven insulin equations are: 
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The other four equations which are composing the remaining states of the 
Sorensen model are the glucagon and three additional (undimensional) variables: 
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It can be observed, that in the different equations the Γi parameter appears, which 
corresponds for the different metabolic sinks: 
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The values of the used constants can be seen in Table 1, [11]. 

Table 1 
Parameter values for the Sorensen model, [11] 

[dL] [L] [dL/min] [L/min] [L/min] [min] 
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The notation of the indexes are: 

• A - hepatic artery 

• B - brain 

• BU - brain uptake 

• C - capillary space 

• G - glucose 

• H - heart and lungs 
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• HGP - hepatic glucose production 

• HGU - hepatic glucose uptake 

• I - insulin 

• IHGP - insulin effect on HGP 

• IHGU - insulin effect on HGU 

• IVI - intravenous insulin infusion 

• K - kidney 

• KC - kidney clearance 

• KE - kidney excretion 

• L - liver 

• LC - liver clearance 

• N - glucagon 

• NHGP - glucagon effect on HGP 

• P – periphery (muscle / adipose tissue). 

• PC - peripheral clearance 

• PGU - peripheral glucose uptake 

• PIR - pancreatic insulin release 

• PNC - pancreatic glucagon clearance 

• PNR - pancreatic glucagon release (normalized). 

• RBCU - red blood cell uptake 

• S – gut (stomach / intestine). 

• SIA - insulin absorption into blood stream from subcutaneous depot 

• SU - gut uptake 

• T - tissue space 

3 Linear Time Varying Systems 

Linear Parameter Varying (LPV) system is a class of nonlinear system, where the 
parameter could be an arbitrary time varying, piecewise-continuous and vector 
valued function denoted by ρ(t), defined on a compact set P. In order to evaluate 
the system, the parameter trajectory is requested to be known either by 
measurement or by computation. 
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A formal definition of the parameter varying systems is given below. 

Definition 1  For a compact P ⊂  R
s
, the parameter variation set FP  denotes the 

set of all piecewise continuous function mapping R+ (time) into P with a finite 

number of discontinuities in any interval. The compact set P ⊂  R
s
 along with the 

continuous functions A: R
s
→ R nn× , B: R

s
 →  R unn× , C: R

s
→ R nny × , D: 

R
s
→ R uy nn ×  represent an nth order LPV system whose dynamics envolve as: 
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with ρ(t)∈  FP , [13]. 

As a result, it can be seen that in the LPV model, by choosing the parameter 
variables, the system’s nonlinearity can be hidden. 

There are different descriptions of the LPV systems. In the affine description 
possibility, a part of the ρ(t) parameters are equal with the x(t) states. However, 
due to the complexity of the Sorensen model, this representation is impossible to 
be done. 

Polytopic representation could be another description of the LPV systems. In this 
case, the validity of the model is caught inside a polytope region and the model is 
built up by a linear combination of the linearized models derived in each polytope 
point, [14]: 
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It is important to understand that the polyopic LPV model is valid only inside the 
polytopic region. During a simulation linear interpolation can be used, if 
necessary, [14]. 

4 LPV Modeling of the Sorensen Model 
From the equations of the Sorensen model (as well as from Figure 1) one can 
observe, that the system has two inputs (Γmeal meal disturbance and ΓIVI the 
injected insulin amount) and one output, the capillary heart-lungs glucose 
concentration, C

HG . However, we have considered an output for the insulin too, 

namely the peripheric insulin concentration in the capillaries, C
PI . 
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During the process of choosing the polytopic points we have restricted to the 
physiological meanings. The first point was the normoglycaemic point (glucose 
concentration y = C

HG  = 81.1 mg/dL and calculated insulin concentration was 
C
PI init = 26.6554 mU/L), while the other points were deflections from this point 

(given below in %): 

• glucose concentrations: 25%, 50%, 75%, 100%, 150%, 200%; 

• insulin concentrations: 0%, 25%, 50%, 100%, 150%, 200%. 

The glucagon and the additional values were kept at their normoglycaemic value. 

In the points of the so generated polytope region (36 points) we have determined 
one by one a linearized model and we have analyzed the stability, observability 
and controllability properties of them. We have concluded, that each system was 
stable, but the observabilty and controllability matrices did not have full rank (we 
have got 15 and 14 respectively). 

Finally, we have simulated the so developed polytopic LPV system of the 
Sorensen model, and we have compared the results with [11]. 

For meal disturbance we have used the same six hour meal disturbance function of 

[15], filtered with an 
60/1

60/1
+s

 first order lag used by [11] (Figure 2), while the 

insulin input was considered zero. 
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Figure 2 

The glucose emptying function, [11] 

Results are presented on Figure 3. It can be seen, that the LPV model is 
approximating with an acceptable error the nonlinear system. However, it can be 
also seen, that without an insulin injection the glucose concentration is going up to 
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an unacceptable value for a diabetic patient. It can be also seen, that for the 
considered polytope, the LPV system is stepping out from the phsiologically 
defined region. 

Therefore we had to extend the polytope for the glucose concentration with other 
points too: 

• glucose concentrations: 250%, 300%, 350%, 400%; 

In this situation one can observe, that the LPV model remains inside the polytope 
region (Figure 4) and is correctly approximating the nonlinear model. Results are 
similar with those obtained by [11]. 
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Figure 3 

The simulation of the nonlinear Sorensen model (continuous) and the 36 points polytope region 
(dashed) 

Conclusions 

In this paper the polytopic LPV modelling possibility was investigated for the 
complex Sorensen model for Type 1 diabetic patients. It was illustrated that the 
LPV model is working only for the considered polytope region. 

The constructed model approximated correctly the original nonlinear model. As a 
result in the future we will investigate the possibility of designing a robust LPV 
system for the Sorensen model. 
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Figure 3 

The simulation of the nonlinear Sorensen model (continuous) and the extended polytope region 
(dashed) 
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