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Abstract: In this paper we introduce new, bacterial evolutionary algorithm (BEA) based 
methods for routing unicast and multicast demands in grooming capable multi-layer 
optical wavelength division multiplexing (WDM) networks. The methods introduced are 
compared with both well known heuristic methods, accumulative shortest path heuristic 
(ASP) and minimum path heuristic (MPH), and as well as with ILP. We prove the strength 
of our approach by comprehensive simulations in our versatile simulator. 
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1 Introduction 

In recent years the traffic load of transport networks has increased significantly 
due to the rapid growth of Internet and network based applications. A time will 
come when the network providers cannot satisfy the traffic demands by merely 
enlarging network capacities. An effective routing method is needed to solve the 
problem. 

At the present time network traffic can be divided into two solidly different 
classes: unicast and multicast demand. While the unicast demand can be 
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characterized by its source, its only one destination and the required bandwidth, 
the multicast demand has more than one destination sharing the same bandwidth. 

Some of the well known unicast applications are file transport, voice over IP 
(VoIP), net banking, etc. Multipoint applications include very important 
broadband services such as digital media broadcasting (e.g. IP-TV, IP-Radio, etc.), 
VoD streaming, distance learning, virtual private LAN services, etc [1]. 

The problem of optical routing of unicast demands was mentioned in various cases 
and places, a detailed classification can be read in [8]. Here we only review those 
few most closely related. In [6] the problem was solved by genetic programming. 
In this approach each gene represents the routing of a demand chosen from a 
previously calculated set. The authors of [7] solved the same problem by a similar 
approach but the full path stored in the DNA. 

Just like the unicast one, multicast routing is also a key issue in network 
management. In [2] a heuristic method for the problem of multicast routing and 
wavelength assignment in WDM ring networks was proposed. Several heuristic 
tree formation algorithms were proposed in [3]. The aim of [4] is to demonstrate 
the advantage of multicast demands. In this paper an ILP formalism was also 
given. In [9] a solution for the Steiner-tree problem is given with the use of 
genetic programming. 

2 Problem Formulation 

A two-layer network is assumed, where the upper, electronic layer is time 
switching capable, while the lower, optical layer is a wavelength (space) switching 
capable one. The electronic layer can perform traffic grooming, i.e. multiplexing 
low bandwidth demands into a single WL channel. The two layers are assumed to 
be interconnected, while routing, the control plane has information on both layers 
and both layers take part in accommodating a demand. 

Network topology and the number of fibers are assumed given as well as the 
description of traffic demands. The capacity of WL channels and the cost of 
routing, (e.g. space switching, optical to electronic conversion, WL branching, 
etc.) can also be given. We assume static traffic consisting of unicast and multicast 
demands. The objective is to reach all destination node(s) from the source while 
observing all routing and technical constraints (for example: bandwidth limit of 
the links) and minimizing the cost. 
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3 Network Model 

We use a wavelength graph model for routing in two layer networks with 
grooming and with different types of nodes and arbitrary topologies. The WL 
graph corresponding to the logical network is derived from the physical network 
considering the topology and capabilities of physical devices. A simpler version of 
the model has been first proposed in [5]. 

The types of nodes can also be quite different: Optical Add-and-Drop 
Multiplexers (OADM), Optical Cross-Connects (OXC: optical core) with full or 
limited, optical or opto-electrical WL conversion or even an Opto-Electrical 
Cross-Connect (OEXC: electrical core) [17]. Furthermore, some of these nodes 
support grooming, typically with a limited number of optical ports. All these 
properties can be considered in the WL graph model, together with different 
protection techniques of traffic demands. 

The network consists of nodes and links connecting the nodes. Both ends of an 
optical link (fiber) are attached to an interface (IF) of a physical device, which 
determines the number of supported WLs in the fiber. Every physical device 
contains an internal switching fabric and some IFs. Each link and every physical 
device has a specific logical representation in the WL graph. 

A physical link is derived to as many logical edges as the number of available 
WLs in the link. The logical sub-graph of a physical device depends on the 
capabilities of the device. Every edge in the graph has a capacity and a cost of 
usage. The capacity of the edge usually equals to the WL capacity, which depends 
on the used carrier. The cost of the edge is determined by its functionality (WL 
edge, O/E conversion, etc.). 

A physical device is modeled by a sub-graph. It represents all IFs of the device, 
and the capabilities of its internal switching fabric. The WL graph model (together 
with our ILP framework) can support devices with different capabilities appearing 
in the network at the same time. The model is easily extendable; the type of 
devices can be changed later, if new internal models are introduced. 
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Figure 1 

Sub-graph of an OXC-WL device in the wavelength graph 
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A sub-graph of a versatile physical device is depicted in Figure 1. The equipment 
is a combination of an OXC with WL-conversion and an OADM: it can originate 
and terminate traffic demands, as well as perform space-switching. WL-
conversion and splitting (branching) of light-trees can only be performed in the 
electronic layer. This is illustrated by an electronic node in the sub-graph, while 
other (pairs of) logical nodes correspond to interfaces. Figure 1 assumes two fibers 
being connected to the device, and two WLs per fiber, which results in two input 
and two output interfaces – because all edges are directed. We will use this 
complex node in the simulations. 

4 Previous Routing Algorithms 

Several algorithms can be applied to route the demands in the network. A simple 
example illustrating the different outcome of the algorithms is shown in Figure 2. 

4.1 ILP Routing and FormulationEquation Section 4 

ILP always provides the optimal cost of routing the current demands in the 
system, thus it serves as a baseline for comparison. On the other hand ILP routing 
usually consumes much time since the current problem is NP-hard [17]. The ILP 
formalism that was used can be read in [4]. 

4.2 Accumulative Shortest Path Heuristic 

Accumulative shortest path algorithm (ASP), also known as Dijkstra’s algorithm, 
is fast, simple and easy to use but in the other hand it is rather costly. It can be 
applied to route demands one-by-one. 

The ASP algorithm in case of multicast demands works as follows: routes are 
calculated between the source and the destination nodes one after the other. The 
algorithm operates directly on the logical network (wavelength graph). The source 
and the destination nodes of a sub-demand are the electronic nodes of the 
corresponding physical device. The cost of already reserved edges of the graph is 
set to zero, which means it can be used for free. The bandwidth usage is non-
additive in case of multicast demands, i.e. if two or more sub-demands of the same 
demand share the same wavelength the needed bandwidth is the same as one’s. 
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4.3 Minimal Path Heuristic (MPH) 

This heuristic is used in case of multicast, since for unicast demands its result is 
the same as ASP. This heuristic usually gives better results than ASP but it is 
slightly slower. 

The MPH algorithm transforms the original wavelength graph into a virtual graph 
and applies Prim’s algorithm [10] to form a minimum cost spanning tree. A virtual 
graph is a full mesh, in which only the source and all the destination nodes are 
presented. The weight of an edge in the virtual graph expresses the cost of the 
shortest path in the original wavelength graph (which implies that the shortest path 
has to be calculated for every node pair in both directions). Prim’s algorithm is 
applied in this virtual graph. After the minimal cost spanning tree is found the 
paths are traced back into the original wavelength graph. A last phase may be 
needed to meet some physical constraints. Details of the MPH algorithm can be 
read in [11]. 

 
Figure 2 

Original topology with the source node and three leave nodes (a), ASP routing (b) , ILP optimal 
routing (c), MPH virtual topology and routing (d), MPH routing (e) 
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5 Bacterial Evolutionary Algorithm 

There exist various optimization algorithms, which have been inspired by natural 
selection processes. The advantage of these algorithms is their ability to solve and 
quasi-optimize problems with non-linear, high-dimensional, multimodal, and 
discontinuous character. These processes can easily be applied in optimization 
problems where one individual corresponds to one possible solution of the 
problem. The original Genetic Algorithm (GA) was developed by Holland [15] 
and was based on the process of evolution of biological organisms. Recognized as 
a powerful global search technique, genetic algorithms have been applied to a 
wide variety of problems. 

A slightly different evolutionary technique is called bacterial evolutionary 
algorithm (BEA) which was inspired by the microbial evolution phenomenon 
[16]. BEA has already been successfully applied to rule learning [14] and feature 
selection [13]. 

The BEA works on a given population of bacteria. Every bacterium represents a 
solution for the problem. The size of the population, i.e. the number of bacteria, is 
predefined. A bacterium has a genotype and a phenotype. The genotype is the 
knowledge of the bacterium, while the phenotype is the concrete solution 
calculated from the previous one. A function, called fitness function, is given to 
measure the quality of the solution. 

There are two operators in the BEA: the bacterial mutation and the gene transfer. 
These operators are applied as it can be seen in . 

 
Figure 3 

Flowchart of Bacterial Evolutionary Algorithm 

During the bacterial mutation at once one part of the gene sequence is selected, 
and a previously given number of clones are generated. A clone only differs from 
the original bacterium in the currently examined part of the gene sequence. If a 
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clone is better, i.e. its fitness is bigger then the original bacterium is replaced. The 
length of the examined part is specified with its ratio to the full length. Mutation 
step is finished only when all the bacteria have been examined in full length. 

The goal of the gene transfer is to distribute knowledge among bacteria. Bacteria 
are ordered according to their fitness value. One bacterium is randomly chosen 
from the better half, one from the worse half population. If their fitness values are 
not equal, than the better one gives a part of its gene sequence to the worse one. 
The length of the transfer is an input parameter for the algorithm as well the 
number of gene transfers during a bacterial cycle. 

6 The Proposed Encoding 

6.1 Fitness Function 

The goal is to minimize the cost of the routing. Hence the fitness should be the 
routing cost multiplied by minus one. However, usually a cheaper solution can be 
obtained by not routing one or more demands. For this reason a penalty cost is 
added to the base fitness for every unrouted demand. Therefore in case of 
inadequate bandwidth, i.e. it is not possible to route all the demands, the algorithm 
tries to find a solution with maximal number of routed demands and with the 
cheapest cost. 

6.2 Genotypes and Phenotypes 

In our approach the goal is to avoid the well known faults of the heuristic 
algorithms. Thus heuristic algorithms (see Session 0 and 0) are applied to 
calculate the phenotype and the fitness, but the routing order and cost conditions 
are encoded in the genotype. Thus genotype of a bacterium is divided into two 
different parts: the first one is the set of virtual costs; the second one is the order 
of routing. 

For every edge in the net there is a corresponding virtual cost in every bacterium. 
The heuristic routing algorithm, that currently takes place during BEA to evaluate 
the phenotype from the genotype, uses these values as the costs of the edges, 
meanwhile the fitness is still calculated with the original costs. An example is 
given in Figure 4. 
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Figure 4 

Faults of routing algorithms, two demands AB and AD, original ASP routing (left) with cost 8, routing 
on virtual costs (right), with cost 7 

The genotype contains the routing order, too. An example is given in Figure 5 to 
show the advantage of this idea. 

   
Figure 5 

Faults of routing algorithms, two demands BA and BD, original routing order (left), better routing 
order (right) 

7 Results 

To optimize the application of our approach the first goal is to find a suitable 
setting for the further usage. A suitable setting means that the likelihood of finding 
a good solution is as great as possible whilst time is not wasted. During the search 
for it at each simulation sequence only one parameter is modified meanwhile the 
others are fixed. For simulation the COST266 reference network was used [12], 
with tree wavelength in every link, 2500 GB capacity pro link. Every demand has 
bandwidth of 500 GB and its source and destination(s) are chosen randomly. 

7.1 Unicast 

During the search for the best settings 15 unicast demands were inserted into the 
network. 
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7.1.1 Number of Bacteria 

Figure 6 shows the changing of the fitness and time with different numbers of 
bacteria. The time dependence is linear. The optimal number of bacteria is about 
6. 
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Figure 6 

Change in cost (left) and time (right) according to the generation and the number of bacteria 

7.1.2 Number of Clones 

Figure 7 shows the change of the cost with different number of clones. Applying 
more clones means faster convergence in the first few generations. But the gain 
with an additional clone is less and less significant as the number of generations 
increases. 
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Figure 7 

Change in cost (left) and time (right) according to the generation and the number of clones 
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7.1.3 Mutation Ratio 

Mutation ratio tells the length of the examined part during a bacterial mutation for 
a bacterium. Larger value means smaller part. As Figure 8 illustrates, its best value 
is about 5, too. There is quite small number of demands in the net to saturating 
thus there are big unused parts in the genome that can be freely manipulated. 
However, during BEA improvements are searched locally, thus a large mutation 
length may be the wrong choice. 

0 10 20 30 40 50 60 70 80 90 100
72

74

76

78

80

82

84

86

Number of generation

C
os

t

 

 
1 mutation ratio
2 mutation ratio
3 mutation ratio
4 mutation ratio
5 mutation ratio
6 mutation ratio
7 mutation ratio
8 mutation ratio
9 mutation ratio

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mutation ratio

Ti
m

e 
[s

ec
]

 

 

 
Figure 8 

Change in cost (left) and time (right) according to the generation and the mutation ratio 

7.1.4 Gene Transfer Length and Number of Gene Transfers 

As Figure 9 illustrates, these two parameters are not as important as the ones 
before. However they can not be omitted to maintain knowledge distribution. The 
run time of the algorithm is nearly independent from their values. 
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Figure 9 
Change in cost according to the generation with the transfer number (left) and transfer length ratio 

(right) 
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7.1.5 Generation Number 

All the simulations showed that in the first 10-20 generation the improvement of 
every generation is usually good. After this period the gain of another generation 
falls radically. Thus in most cases 30 generation is enough to find an adequate 
solution and after the 100th generation the improvement is not considerable. 

7.1.6 Suggested Settings 

According to the previous studies the good setting is something like as follows: 
30-100 generations, 5-6 bacteria, 4-5 clones, mutation ratio is 4-5, 3 gene transfers 
in a cycle and 0.3 part of gene sequence is transported in every gene transfer. 

7.1.7 Performance 

The performances of the algorithms are displayed in Figure 10. ILP is always the 
cheapest, as expected, but also the slowest. Heuristic method (ASP) is the fastest 
but also the worst. Meanwhile the BEA offers something between these two. 
During 30-100 generations the results of the ILP method can be achieved in 
notably less time. Even there is only time for the first generation the result is still 
better than the heuristic one whereas time is affordable. 

1 2 3 4 5 6 7 8 9 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Number of inserted demands

C
os

t

 

 
Heuristic
ILP
Bacterial algorithm 1th generation
Bacterial algorithm 30th generation
Bacterial algorithm 100th generation

1 2 3 4 5 6 7 8 9 10 15 20 25 30
10-4

10-2

100

102

104

106

Number of inserted demands

Ti
m

e 
[s

ec
]

 

 
Heuristic
ILP
Bacterial algorithm 100th gen
Bacterial algorithm 30th gen
Bacterial algorithm 1th gen

 
Figure 10 

Performance of the methods in cost (left) and time (right) 

7.2 Multicast 

For multicast demands two well known heuristics were implemented to evaluate 
the genotype (see Section 0). The same search for affordable settings was done for 
these two as in the unicast case. In this case four multicast demands with eight 
destinations for each were inserted. The results were almost the same as before. 
The suitable setting is as follows: 30-100 generations, 5-6 bacteria, 4-5 clones, 
mutation ratio is 4-5, gene transfer is 3 and 0.3 part of gene sequence is 
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transported in every gene transfer for both type. The solution is linear with the 
number of bacteria, number of clones and mutation rate and nearly independent 
from the other parameters. 

7.2.1 Comparison of the Evaluation Methods for BEA 

As Figure 11 illustrates, at the same generation the MPH evaluation almost always 
gives better results than ASP evaluation. With the growth of the complexity the 
gain is increasing. 

However, if the solution time is also measured the picture is changing a bit. The 
MPH evaluation in average is twice slower than the ASP evaluation and this ratio 
is increasing with the complexity although not significantly. Consequently if the 
speed is important then the ASP evaluation is suggested, if the quality of the 
solution is relevant then the MPH evaluation is proposed. 
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Figure 11 

ASP evaluation pro MPH evaluation in cost, 1st generation (left), 30th generation (right) 

7.2.2 BEA and the Heuristic Algorithms 

In Figure 12 the solution cost of the heuristic algorithms is compared to the first 
generation result of ASP evaluation BEA. In Figure 13 the same is displayed but 
in term of the elapsed time. The first generation of BEA is almost always better 
than the classical heuristics, especially in complex cases with affordable time. 

If a later generation is mentioned then the gain of the BEA is increasing, but the 
time difference is growing, too as shown in Figure 14. 
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Figure 12 

Heuristics pro ASP evaluation 1st generation in cost, ASP heuristic (left), MPH heuristic (right) 
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Figure 13 
Heuristics pro ASP evaluation 1st generation in time, ASP heuristic (left), MPH heuristic (right) 
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Figure 14 
MPH heuristic pro ASP evaluation 30th generation in cost (left) and time (right) 
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7.2.3 Bacterial Evaluation and ILP 

In this case the goal was to find as good results as possible. Hence MPH 
evaluation with 100 generation is used. The result is shown in Figure 15. The 
MPH evaluation is always near to the ILP result but its speed is up to 200 times 
faster. 
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Figure 15 

ILP pro MPH evaluation 100th generation in time (left), MPH evaluation pro ILP in cost (right) 

Conclusions 

We have presented a new and powerful way to find optimal routing in WDM 
networks. This method can be applied for unicast and multicast demand as well. 
Usually it finds nearly as good solution as the ILP but its time dependence is 
polynomial. 

The proposed encoding can be easily extended for nearly all routing and other 
selected problems in connection with network. 
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