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Abstract — The main objective of the paper is to study the approximation and complexity trade-
off capabilities of the recently proposed Tensor Product Distributed Compensation (TPDC)
based control design framework. The TPDC is the combination of the TP model transformation
and the Parallel Distributed Compensation (PDC) framework. The TP model transformation
includes an HOSVD based technique to solve the approximation and complexity trade-off. In
this paper we generate TP models with different complexity and approximation properties, and
then we derive controllers for them. We analyze how the trade-off effects the model behavior
and control performance. All these properties are studied via the state feedback controller
design of the Translational Oscillations with an Eccentric Rotational Proof Mass Actuator
(TORA) System.

1 Introduction
The TP model form is a dynamic model representation whereupon Linear Matrix
Inequality (LMI) based control design techniques [1–3] can immediately be executed.
It describes a class of Linear Parameter Varying (LPV) models in a polytopic form
that is the convex combination of linear time invariant (LTI) models, where the convex
combination is defined by the weighting functions of each parameter separately. This
model is called TP model, or polytopic model.

The TP model transformation is a recently proposed numerical method to trans-
form LPV models into TP model form (polytopic form) [4, 5]. It is capable of
transforming different LPV model representations (such as physical model given
by analytic equations, fuzzy, neural network, genetic algorithm based models) into
TP model form in a uniform way. In this sense it replaces the analytical derivations
and affine decompositions (that could be a very complex or even an unsolvable
task), and automatically results in the TP model form. Execution of the TP model
transformation takes a few minutes by a regular Personal Computer. The TP model
transformation minimizes the number of the LTI components of the resulting TP
model. Furthermore, the TP model transformation is capable of resulting different
convex hulls of the given LPV model.

One can find a number of LMIs under the PDC framework which can immediately



be applied to the TP model, according to various control design specifications.
Therefore, it is worth linking the TP model transformation and the PDC design
framework [6]. That is called Tensor Product Distributed Compensation (TPDC) in
the literature.

During the TPDC controller design procedure complexity issues can occur that
can inhibit the derivation of the controller, or the complexity of the resulting con-
troller is so high that it is impossible to handle in real world operation. The TPDC
framework offers trade-off techniques that help us to control the model complexity
and approximation accuracy challenge. In this paper we derive TP models with differ-
ent complexity of the TORA system, and design controllers that assures asymptotic
stability.

In order to study the trade-off capability of TP model transformation we present
a case study of the TORA system. We generate TP models with different complexity,
and we derive controllers to each models. We analyze how the behavior of these
models and the controllers’ performance change compared to the exact TP model by
reducing more and more the complexity.

The rest of the paper is organized as follows: Section 2 introduce the Tensor
Product Distributed Compensation based controller design framework. Section 3
at first describes the TORA system, and discuss the goals and the specifications of
the controller. Then, the different TP models are given, and through simulations the
designed controllers are analyzed and compared. Finally, Section 4 concludes the
results.

2 Tensor Product Distributed Compensation (TPDC)
based Controller Design Framework

Consider the following parameter-varying state-space model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (1)

y(t) = C(p(t))x(t) + D(p(t))u(t),

with input u(t), output y(t) and state vector x(t). The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, where p(t) ∈ Ω is time varying N-dimensional param-
eter vector, and is an element of the closed hypercube Ω = [a1, b1] × [a2, b2] × · · · ×
[aN , bN] ⊂ RN . The parameter p(t) can also include some elements of x(t).

The TP model transformation starts with the given LPV model (1) and results in
the TP model representation (

ẋ
y

)
≈
ε
S

N
⊗

n=1
wn(pn)

(
x
u

)
(3)



that can always be transformed to the polytopic form:(
ẋ(t)
y(t)

)
≈
ε

R∑
r=1

wr(p(t))Sr

(
x(t)
u(t)

)
(4)

where

ε =


∥∥∥∥∥∥∥S(p(t)) −

R∑
r=1

wr(p(t))Sr

∥∥∥∥∥∥∥
L2


2

≤
∑

k

σ2
k . (5)

Here, ε symbolizes the bounded approximation error, σk are the singular values
discarded during the trade-off of the TP model transformation [5, 7], and wr(p(t)) ∈
[0, 1] are the coefficient functions. For further details about TP model transformation
we refer to [4, 5, 8].

The TP model transformation ensures the convexity of the convex combination
of the LTI systems as follows:

Definition 1 The model (4) is convex if:

∀r ∈ [1,R],p(t) : wr(p(t)) ∈ [0, 1] (6)

∀r ∈ [1,R],p(t) :
In∑

i=1

wr(p(t)) = 1 (7)

This simply means that S(p(t)) is within the convex hull of the LTI vertex systems Sr

for any p(t) ∈ Ω.
S(p(t)) has a finite element TP model representation in many cases (ε = 0 in (4)).

In this case we say that the TP model is exact. However, exact finite element TP
model representation does not exist in general (ε > 0 in (4)), see Ref. [9]. In this case
ε→ 0, when the number of the LTI systems involved in the TP model goes to∞.

The TP model transformation helps the trade-off between the complexity of
the model, namely the number of LTI vertex systems, and the modeling accuracy,
denoted by ε in Equation (5) [4]. The TP model transformation offers options to
generate different types of the weighting functions w(·) to a given specification.

One class of the LMI based control design methods, the Parallel Distributed
Compensation (PDC) framework was introduced by Tanaka and Wang [6]. The PDC
design framework determines one LTI feedback gain to each LTI vertex system of
a given TP model. The inputs of the framework are the LTI vertex systems Sr, and
the results are the LTI vertex gains Fr of the controller. These gains Fr are obtained
from a feasible solution of the LMI based stability theorems. After having the Fr,
the control value u(t) is determined by the help of the same TP model structure used
in (4):

u(t) = −

 R∑
r=1

wr(p(t))Fr

 x(t). (8)

The LMI theorems, to be solved under the PDC framework, are selected according
to the stability criteria and the desired control performance. For instance, the speed



of response, constraints on the state vector or on the control value can be considered
via properly selected LMI based stability theorems.

3 Complexity and approximation trade-off in the con-
trol of the TORA system

This section is devoted to show through the case study of the TORA system the
approximation trade-off capabilities of the TP model transformation. Besides the
exact TP model, we also generate complexity relaxed TP models. For each TP model
a corresponding controller is designed. We analyze how the complexity relaxation
changes the behavior of the TP models, and influence the controller performances.
At the end of the section we make a comprehensive summary and comparison.

The study is conducted through a state feedback control design for the Trans-
lational Oscillations with an Eccentric Rotational Proof Mass Actuator (TORA)
System, which was originally studied as a simplified model of a dual-spin spacecraft
with mass imbalance to investigate the resonance capture phenomenon [10, 11]. The
same plant was later studied involving the rotational proof-mass actuator for feedback
stabilization of translational motion [12, 13]. The TORA system is also considered
as a fourth-order benchmark problem [14–16]. The International Journal of Robust
and Nonlinear Control published a series of studies about the control issue of the
TORA system in Volume 8 in 1998 [17].

3.1 Nomenclature
• M = mass of cart

• k = linear spring stiffness

• m = mass of the proof-mass actuator

• I = moment of inertia of the proof-mass actuator

• e = distance between the rotation point and the center of the proof mass

• N = control torque applied to the proof mass

• F = is the disturbance force on the cart

• q = translational position of the cart

• θ = angular position of the rotational proof mass
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Figure 1: TORA system

3.2 Equations of motion
The TORA system is shown in Figure 1 with the notation defined above. The
oscillation consists of a cart of mass M connected to a fixed wall by a linear spring
of stiffness k. The cart is constrained to have one-dimensional travel in the horizontal
plane. The rotating proof-mass actuator is attached to the cart. The control torque is
applied to the proof mass. θ = 0◦ is perpendicular to the motion of the cart, while
θ = 90◦ is aligned with the positive q direction. The equations of motion are given
by [17]:

(M + m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) (9)

(I + me2)θ̈ = −meq̈ cos θ + N (10)

with the normalization [12]:

ξ '

√
M + m
I + me2 q τ '

√
k

M + m
t (11)

u '
M + m

k(I + me2)
N (12)

the equations of motion become

ξ̈ + ξ = ρ
(
θ̇2 sin θ − θ̈ cos θ

)
(13)

θ̈ = −ρξ̈ cos θ + u (14)

where ξ is the normalized cart position, and u is the per unit control torque. τ is
the normalized time whereupon the differentiation is understood. ρ is the coupling
between the rotational and the translational motions:

ρ '
me√

(I + me2)(M + m)
. (15)

The above equations can be given in the state-space model form

ẋ(t) = f(x(t)) + g(x(t))u(t), (16)



Table 1: Parameters of the TORA system
Description Parameter Value Units
Cart mass M 1.3608 kg
Arm mass m 0.096 kg
Arm eccentricity e 0.0592 m
Arm inertia I 0.0002175 kg m2

Spring stiffness k 186.3 N/m
Coupling parameter ρ 0.200 —

y(t) = c(x(t)),

where

f(x(t)) =


x2

−x1+ρx2
4 sin(x3)

1−ρ2 cos2(x3)
x4

ρ cos(x3)(x1−ρx2
4 sin(x3))

1−ρ2 cos2(x3)

 , g(x(t)) =


0

−ρ cos(x3)
1−ρ2 cos2(x3)

0
1

1−ρ2 cos2(x3)

 , (17)

c(x(t)) =

(
0 0 x3 0
0 0 0 x4

)
.

and x(t) =
(
x1(t) x2(t) x3(t) x4(t)

)T
=

(
ξ ξ̇ θ θ̇

)T
. Let us write the above

equation in the typical form of linear parameter-varying state-space model as

ẋ(t) = S(p(t))
(
x(t)
u(t)

)
y(t) = Cx(t), (18)

where system matrix S(p(t)) contains:

S(p(t)) =
(
A(p(t)) B(p(t))

)
and p(t) =

(
x3(t) x4(t)

)
∈ Ω is time-varying 2nd-order parameter vector, thus

A(x3(t), x4(t)) =


0 1 0 0

− 1
1−ρ2 cos2(x3) 0 0 ρx4 sin(x3)

1−ρ2 cos2(x3)
0 0 0 1

ρ cos(x3)
1−ρ2 cos2(x3) 0 0 −x4ρ

2 cos(x3) sin(x3)
1−ρ2 cos2(x3)

 (19)

B(x3(t)) = g(x(t)) C =

(
0 0 1 0
0 0 0 1

)
.

The laboratory version of the TORA system is described in [15]. The nominal
configuration of this version is given in Table 1.
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Figure 2: Weighting functions of exact TP model for x3(t) and x4(t)

3.3 Different complexity relaxed TP models generated by the TP
model transformation

We execute the TP model transformation on the LPV model (18) of the TORA. As
a first step of the TP model transformation we have to define the transformation
space Ω. If we see the simulations in the papers of special issue [17] and [18–20] we
find that θ is always smaller than 0.85 rad, and according to the maximum allowed
torque u = 0.1 N the system would not achieve larger θ̇ than 0.5 rad, but could
have a little overshoot, see [17, page 392] and control specifications section of
this paper. Therefore, we define the transformation space as Ω = [−a, a] × [−a, a]
(x3(t) ∈ [−a, a] and x4(t) ∈ [−a, a]), where a = 45

180π rad (note that these intervals can
be arbitrarily defined). The TP model transformation starts with the discretization
over a rectangular grid. Let the density of the discretization grid be 137 × 137 on
(x3(t) ∈ [−a, a])× (x4(t) ∈ [−a, a]). The result of the TP model transformation shows
that TORA system can be exactly given in the HOSVD-based canonical polytopic
model form with minimum 5 × 2 = 10 LTI vertex models.

TP MODEL 0 In this case we discard only zero singular values, then the TP
transformation results in an exact representation of the TORA system:

ẋ(t) = S(p(t))
(
x(t)
u(t)

)
=

5∑
i=1

2∑
j=1

w1,i(x3(t))w2, j(x4(t))
(
Ai, jx(t) + Bi, ju(t)

)
. (20)

The close to NO type weighting functions that define the tight convex hull of the
LPV model is depicted in Figure 2.

During the TP model transformation based controller design procedure complex-
ity issues can occur that can inhibit the derivation of the controller, or the complexity
of the resulting controller is so high that it is impossible to handle in real world
operation. The TP model transformation based control design framework offers
trade-off techniques that help us to control the model complexity and approximation
accuracy challenge.



Besides the exact TP model, we also generate complexity relaxed TP models of
the TORA system. In later section for each TP model a corresponding controller is
designed. We analyze how the complexity relaxation changes the behavior of the TP
models, and influence the controller performances.

In the followings we generate close to NO types weighting function, but in each
TP model we reduce the number of weighting function, thus the complexity of the
model.

As it has been already shown, the rank of the system matrix S(p(t)) in the
dimension of x3(t) is 5, whilst in the dimension of x4(t) is 2. The nonzero singular
values in each dimension is

σ1,1 = 341.31
σ1,2 = 5.5948
σ1,3 = 3.8334
σ1,4 = 0.085134
σ1,5 = 0.041615

σ2,1 = 341.31
σ2,2 = 5.5948

TP MODEL 1 The complexity of the TP model can be reduced in the dimension
of x3(t) by discarding some singular values. Note that in the dimension of x4(t)
the reduction is not possible since convexity (Definition ??) requires at least two
weighting functions. Hence, let us keep the four largest singular values of dimension
x3(t). It results an approximation of the TORA system that is composed of 4 × 2 = 8
LTI systems. Figure 3 shows the weighting functions of the tight convex hull of the
reduced LPV model.

ẋ(t) = S(p(t))
(
x(t)
u(t)

)
=

4∑
i=1

2∑
j=1

w1,i(x3(t))w2, j(x4(t))
(
Ai, jx(t) + Bi, ju(t)

)
. (21)

Eq.(̃5) gives only an upper bound for the approximation error that is calculated by
the discarded singular values. In case of TP MODEL 1 it is σ1,5 = 0.041615. In
order to measure the actual modeling approximation error by numerical checking,
the difference of the analytical model and TP models, in terms of L2 norm, were
calculated over 10 000 random sample points. The numerical approximation error of
TP MODEL 2b is 0.0023.

TP MODEL 2 In the dimension of x3(t) further reduction is possible. By discard-
ing the two smallest singular values, namely σ1,4 and σ1,5, we get a more complexity
relaxed TP model of the TORA system. The resulting system equation is

ẋ(t) = S(p(t))
(
x(t)
u(t)

)
=

3∑
i=1

2∑
j=1

w1,i(x3(t))w2, j(x4(t))
(
Ai, jx(t) + Bi, ju(t)

)
. (22)
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Figure 3: Close to NO type weighting functions of the reduced TP model of 8 LTI
systems
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Figure 4: Close to NO type weighting functions of the reduced TP model of 6 LTI
systems

In this case the upper bound of the approximation error is 0.126749, while the
maximal numerical error is 0.0024. In Figure 4 the resulting weight functions are
illustrated.

TP MODEL 3 By keeping only the two largest singular values in dimension x3(t),
the most reduced TP model of the TORA system realizes. The system equation of
this model is

ẋ(t) = S(p(t))
(
x(t)
u(t)

)
=

2∑
i=1

2∑
j=1

w1,i(x3(t))w2, j(x4(t))
(
Ai, jx(t) + Bi, ju(t)

)
. (23)

In this case the upper bound of the approximation error is 3.960149, while the
maximal measured error is 0.21513. In Figure 5 the resulting weight functions are
illustrated.
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Figure 5: Close to NO type weighting functions of the reduced TP model of 4 LTI
systems

Comparison of the resulting TP models The main conclusion of the comparison
is the complexity of the model can be drastically reduced without causing unaccept-
able approximation error as the results, summarized in Table 2 on page 13, show.
The second conclusion is that the estimated error bound from the singular values
are much worse than the actual approximation error. As a matter of fact we have to
be careful when selecting the non-exact approximation. In most cases, and in the
case of TORA, the approximated model is suitable, but there are some systems, e.g.
chaotic systems, when even slight changes can cause drastic differences. It is also
worth noticing here that usually the error of typical identification techniques is in a
larger range than the discarded singular values.

3.4 Derivation of controllers
For the present controller design, we apply the widely adapted design specifications
detailed on [17, page 309] and in [18–20]. These specifications for the TORA system
can be summarized as follows:

Design a controller that satisfies the following criteria:

• The closed-loop system exhibits good settling behavior for a class of initial
conditions.

• The closed-loop system is stable (in this paper we aim at achieving asymptotic
stability).

• The physical configuration of the system necessities the constraint |q| ≤
0.025 m.

• The control value is limited by N ≤ 0.100 Nm, although somewhat higher
torques can be tolerated for short periods.

Considering these specifications, we derive controllers by applying the TP model
and the LMI theorems. Having the solution of the LMIs the feedback gains Fr are



computed by Equation (26), and the control value is computed by Equation (8). In
the present case it is:

u(t) = −

 R∑
r=1

wr(x3(t), x4(t))Fr

 x(t),

where R is the number of LTI systems of the applied TP model.
We select the following LMI systems to guarantee the above given specifications.

The derivations and the proofs of these theorems are fully detailed in [6].

Theorem 1 (Asymptotic stability) TP model (4) with control value (8) is asymptot-
ically stable if there exists X > 0 and Mr satisfying equations

−XAT
r − ArX + MT

r BT
r + BrMr > 0 (24)

for all r and
−XAT

r − ArX − XAT
s − AsX+ (25)

+MT
s BT

r + BrMs + MT
r BT

s + BsMr ≥ 0.

for r < s ≤ R, except for the pairs (r, s) such that wr(p(t))ws(p(t)) = 0,∀p(t).

Theorem 2 (Constraint on the control value) Assume that ‖x(0)‖ ≤ φ, where x(0)
is unknown, but the upper bound φ is known. The constraint ‖u(t)‖2 ≤ µ is enforced
at all times t ≥ 0 if the LMIs

φ2I ≤ X(
X MT

i
Mi µ2I

)
≥ 0

hold.

Theorem 3 (Constraint on the output) Assume that ‖x(0)‖ ≤ φ, where x(0) is un-
known, but the upper bound φ is known. The constraint ‖y(t)‖2 ≤ λ is enforced at all
times t ≥ 0 if the LMIs

φ2I ≤ X(
X XCT

i
CiX λ2I

)
≥ 0

hold.

We compose a joint LMI system of Theorem 1–3 to guarantee the stability issues
and constraints defined in the above control specification. The feedback gains are
determined form the solutions X and Mr as

Fr = MrX−1. (26)

The feasible solution of this joint LMI system can be easily computed by an LMI
solver, e.g. the one included in the LMI package of M Robust Control Toolbox.



C 0 We consider this controller as the reference controller, and the
response of the rest of the controllers are compared to this. The controller is designed
for TP MODEL 0. This requires the solution of 67 LMI equations.

C 1 The feedback gains for the controller of TP MODEL 1 is obtained
by the feasible solution of an LMI system containing 46 LMI equations.

C 2 The LMI system of TP MODEL 2c consists of 29 LMIs. The
feedback gains of the controller, that is derived from the feasible solution of LMI
system, is the following:

C 3 We applied the same LMI system to TP MODEL 3 that results a
system of 16 LMI equations. The feedback gains of the controller is obtained from
the feasible solution of the LMI system.

Simulation results and comparison of derived controllers In the simulation the
system’s initial configuration was x(0) =

(
0.023 m 0 0 0

)
. The results of the

four controllers are shown and are plotted together for better visualization in Figure 6.
Figure 7 shows some parts of the simulation results magnified in order to highlight
the differences. We can see on the figures, there are only slight differences between
the responses of the different controllers, practically we can say that the results are
identical despite of the applied reduction during the TP model transformation. The
main reason behind this fact is that the strength of influence of the LTI models is
proportional to the magnitude of the singular values. Therefore, the magnitude of
differences between the designed controllers is also strongly related to the magnitude
of the singular values. For illustration, we should analyze carefully the responses of
the controller of the exact model (indicated with “CTRL 0” in the figures), and the
controller C 2. The difference is so small, because the difference of the
exact TP model, TP MODEL 0 and the TP MODEL 1 from which the controllers
were derived is also really small. The contribution of the neglected LTIs to the
TP model is proportional to the ratios of the singular values, and σ1,5 has only an
effect of 0.012%. If we analyze the response of C 2, we cannot see more
significant difference, because the contribution of σ1,4 is also around 0.025%, thus
together with σ1,5 it is still around 0.037% in total. A slightly significant change
can be observer in the response of C 3. In case the sum of the discarded
singular values has an effect of about 1.16%, thus a bigger results in the response of
the controller.

Another important issue concerning these results is that in order to derive C-
 0, an LMI system of 67 LMIs has to be solved, whilst 16 LMIs can describe
C 0, the controller of the most reduced TP model that is a 76% of reduc-
tion. The TORA system is a simple model, the number of LMIs is moderate, but by
defining more constraints, applying more complex controller specifications, such as
decay rate control, observer design, etc., and if the TP model of the system consists
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Figure 6: Asymptotic stability controller design of exact and reduced TP models
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Figure 7: Magnification of Figure 6 for emphasizing the differences of controllers

of more LTI systems, the number of LMIs can easily explode to such a manner that
is difficult to handle [21].

Table 2 shows a comprehensive chart on the approximation trade-off of the TORA
system.

Again we have to be careful with the approximation trade-off. In case of exact TP
models, the feasible solution of the LMI system are proofed to guarantee the stability
and defined controller specifications for original model. In this case the solution is
trackable through the LMIs and TP model transformation. On the other hand, if the
TP model is only an approximation of the original model, then in mathematical sense
we can only say that the stability and control specification are guaranteed only for
the approximated model described by the TP model. Even in case of comprehensive
series of simulation the controller shows stabilization capability, it is not trackable

Table 2: Summary of approximation trade-off of the TORA system
Number

of
singular
values
kept

Number
of LTIs

Reduction
ratio of
model

transfor-
mation

Upper-
bound of

esti-
mated
error

Measured
maximal
L2 error

Number
of LMIs
of the
con-

troller

Reduction
ration of the
number of

LMIs

5 10 0% 0 10−12 67 0%
4 8 20% 0.00416 0.0023 46 31%
3 6 40% 0.12675 0.0024 29 56%
2 4 60% 3.96015 0.21513 16 76%



mathematically. For instance in case of a dynamic system with chaotic behavior, a
small error can cause explosion in the system. However, in most cases the controllers
derived from the approximated models are satisfactory as the modeling error of
typical identification techniques in in larger range than the approximation error.

4 Conclusion
The paper presents a study how the TPDC controller design framework can handle
the trade-off between approximation accuracy and model complexity through the case
study of the TORA system. The proposed framework is shown to be an efficient tool
for complexity reduction. The simulation proved that there is no significant difference
in control response between the controllers derived from the reference model and the
reduced models whilst major loss in model size and cut in computational necessity is
achieved. As a matter of fact we should note that the stability issues of the original
model are not guaranteed in mathematical sense by the controllers derived from the
reduced TP models.
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