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Abstract: Several Fuzzy Rule Interpolation (FRI) techniques have limitations from the 
direct application point of view, for example their applicability is limited to the one 
dimensional case, or they can be defined only based on the two closest surrounding rules of 
the actual observation. This is the reason why relatively few FRI methods can be found 
among the practical fuzzy rule based applications. With the application of FRI methods 
sparse rule bases can be used, which substantially simplify the construction of fuzzy rule 
bases, because FRI methods can provide reasonable (interpolated) conclusions even if 
none of the existing rules fires under the gathered observation. Compared to the classical 
fuzzy CRI (compositional rule of inference), by eliminating the derivable rules, the number 
of the fuzzy rules needed in the rule base could be dramatically reduced. This paper 
provides a brief overview of several FRI methods and in more details an application 
oriented simple and quick FRI method “FIVE” will be introduced. For the demonstration 
of the benefits of the interpolation-based fuzzy reasoning as systematic approach, a robot 
guidance application is presented, where the robot is able to cycle through defined 
waypoints while avoiding collision with obstacles and walls. All of the controlling parts 
were accomplished with fuzzy rule bases of the “FIVE” FRI method. 
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1 Introduction 

Traditional fuzzy reasoning methods (e.g. the Zadeh-Mamdani compositional rule 
of inference (CRI) and the Takagi-Sugeno reasoning method) are demanding 
“complete rule bases”, and hence the construction of a classical rule base requires 
extensive work to define all the possible rules. In contrary, the application of 
fuzzy rule interpolation (FRI) methods, where the derivable rules are missing on 
purpose (as FRI methods are capable of providing reasonable (interpolated) 
conclusions even if none of the defined rules fire under the current observation) 
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allows to avoid a considerable amount of unnecessary work during construction of 
the rule bases, because the rule base of an FRI controller could contain the most 
significant fuzzy rules alone. On the other hand most of the FRI methods are 
sharing the burden of high computational demand, e.g. the task of searching for 
the two closest surrounding rules to the observation, and calculating the 
conclusion at least in some characteristic α-cuts. Additionally in some methods 
interpreting the gained fuzzy conclusion is also not straightforward [7] even if 
there have been a lot of efforts to rectify the interpretability of the interpolated 
fuzzy conclusion [17]. In [1] Baranyi et al. give a comprehensive overview of the 
recent existing FRI methods. Moreover some of the FRI methods need special 
extension for the multidimensional case (e.g. [2]-[3]) because they are originally 
defined for one dimensional input space. In [22] Wong et al. gave a comparative 
overview of the multidimensional input space capable FRI methods and in [2] 
Jenei introduced a way for axiomatic treatment of the FRI methods. In [14] 
Johanyák et al. introduces an automatic way for direct sparse fuzzy rule base 
generation based on given input-output data. Many of these methods are hardly 
suitable for real-time applications due to the high computational demand (notably 
the search for the two closest surrounding rules to an arbitrary observation in the 
multidimensional antecedent space). Some FRI methods, e.g. LESFRI [19] or the 
method introduced by Jenei et al. in [3], eliminate the search for the two closest 
surrounding rules by taking all the rules into consideration, and therefore speed up 
the reasoning process. Eliminating the searching process for the two closest 
surrounding rules by taking all the rules into consideration, hence speeding up the 
reasoning can be achieved by some FRI methods (e.g. LESFRI [19] or the method 
introduced by Jenei et al. in [3]). An application oriented aspect of the FRI 
emerges in the concept of “FIVE” (Fuzzy Interpolation based on Vague 
Environment). In the followings after a brief introduction of several FRI 
techniques, the method “FIVE” will be introduced in more details. 

2 A Short Overview of Several FRI Techniques 

Kóczy and Hirota [5] published one of the first FRI technique usually referred as 
the KH method, which is applicable to convex and normal fuzzy (CNF) sets. The 
conclusion is determined by its α-cuts in such a way that the ratio of distances 
between the conclusion and the consequents should be identical with the ones 
between the observation and the antecedents for all important α-cuts. It is shown 
in, e.g. in [7], [8] that the conclusion of the KH method is not always directly 
interpretable as a fuzzy set. Many alternative solutions emerged motivated by this 
drawback. Vass, Kalmár and Kóczy [20] proposed a modification (VKK method), 
where the conclusion is computed based on the distance of the centre points and 
the widths of the α-cuts, instead of the lower and upper distances. The VKK 
method decreases the applicability limit of KH method, but does not eliminate it 
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completely. The technique cannot be applied if any of the antecedent sets is 
singleton, because the width of the antecedent’s support must be nonzero. Another 
modification of KH is the modified α-cut based interpolation (MACI) method [17], 
which alleviates completely the abnormality problem. The main idea of MACI is 
to transform fuzzy sets of the input and output universes to such a space where 
abnormality is excluded, then computes the conclusion there, which is finally 
transformed back to the original space. MACI uses vector representation of fuzzy 
sets and originally applicable to CNF sets [23]. These latter conditions (CNF sets) 
can be relaxed, but it considerably increases the computational need of this 
interpolation method [18]. MACI is one of the most frequently used FRI methods 
[22], since it preserves advantageous computational and approximate nature of 
KH, while it excludes its abnormality. A fuzzy interpolation technique applicable 
to CNF sets was proposed by Kóczy et al. [6], which is called conservation of 
“relative fuzziness” (CRF) method, meaning that the left (right) fuzziness of the 
approximated conclusion in proportion to the flanking fuzziness of the 
neighbouring consequent should be the same as the (left) right fuzziness of the 
observation in proportion to the flanking fuzziness of the neighbouring antecedent. 
Another improved fuzzy interpolation technique for multidimensional input 
spaces (IMUL) was proposed in [21], and described in details in [22]. IMUL 
applies a combination of CRF and MACI methods, and mixes their advantages. 
The core of the conclusion is determined with using the MACI method, while its 
flanks are determined by using CRF. The main advantages of this method are its 
applicability for multi-dimensional problems and its relative simplicity. 
Conceptually different approaches were proposed by Baranyi et al. [1] as “General 
Methodology” (GM) (this notation refers to the feature that these methods are able 
to process arbitrary shaped fuzzy sets). The basic concept is to calculate the fuzzy 
conclusion in two steps. First a new fuzzy rule is interpolated at the reference 
point of the fuzzy observation, then a single rule reasoning method (revision 
function) is used to determine the final fuzzy conclusion based on the similarity of 
the fuzzy observation and the “interpolated” rule antecedent. Recently FRI 
methods have been successfully adapted in several practical application areas like 
fuzzy modelling of an anaerobic tapered fluidized bed reactor (Johanyák et al. 
[14]). 

3 The FRI Method “FIVE” 

The FIVE method was originally introduced in [9], [10] and [11] and it was 
developed to fulfill the speed requirements of direct fuzzy control, where the 
conclusions of the fuzzy controller are applied directly as control actions in a real-
time system, so the concept of the FIVE method is an application oriented aspect 
of the FRI techniques. Most of the control applications serves crisp observations 
and requires crisp conclusions from the controller, the main idea behind the FIVE 
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is based on the fact aforementioned. Adopting the idea of the vague environment 
(VE) [4], FIVE can handle the antecedent and consequent fuzzy partitions of the 
fuzzy rule base by scaling functions [4] therefore it can turn the task of fuzzy 
interpolation to crisp interpolation. The idea of a vague environment is based on 
the similarity or in other words the indistinguishability of elements. In a vague 
environment the fuzzy membership function μA(x) is indicating the level of 
similarity of x to a specific element a which is a representative or prototypical 
element of the fuzzy set μA (x), or it can be interpreted as the degree to which x is 
indistinguishable from a [4]. Therefore the α-cuts of the fuzzy set μA (x) are the 
sets which contain the elements that are (1-α)-indistinguishable from a. Two 
values in a vague environment are ε-distinguishable if their distance is greater than 
ε, where the distances are weighted distances. The weighting factor or function is 
called scaling function (factor) [4]. The scaling function serves the purpose of 
describing the shapes of the fuzzy sets in the partition. After determining the 
vague environment of both the antecedent and consequent part universes (the 
scaling function or at least the approximate scaling function [9], [11]), every 
member set of the fuzzy partition can be characterized by points in that vague 
environment (for example see the approximated scaling function s shown on Fig. 
2). Fig. 1 presents a one dimensional antecedent and consequent system with two 
fuzzy rules. Therefore if the observation is a singleton, by the concept of vague 
any crisp interpolation, extrapolation, or regression method can be adapted very 
simply for FRI [9], [11]. In method FIVE because of its simple multidimensional 
applicability, the Shepard operator based interpolation (first introduced in [15]) 
was adapted (see e.g. Fig. 1). The consequent and antecedent sides of the vague 
environment can be precalculated and cached, this provides the fastness of the 
method, since only the interpolation between the points defining the rule base 
should be performed real time. The applicability of the FIVE method can be 
limited whether an approximate universal scaling function can be found both for 
the antecedent and consequent partitions, which describes the whole partition even 
if the partition is not a Ruspini  partition. For selecting the scaling function in case 
of triangular or trapezoid fuzzy sets a solution can be found in [13]. Provided that 
the fuzzy sets are triangles, each fuzzy term can be characterised by a triplet (three 
values, see Fig. 2): values of the left and the right scaling factors and the value of 
its core point. With this three cardinal points the scaling function can be simply 
interpolated as an approximate scaling function (see e.g. on Fig. 2). Beyond the 
simplicity and therefore the high reasoning speed, the original FIVE method has 
two obvious drawbacks: the lack of the fuzziness on the observation and 
conclusion side. The explanation is that this deficiency is inherited from the nature 
of the applied vague environment, which describes the indistinguishability of two 
points and therefore the similarity of a fuzzy set and a singleton only. The lack of 
the fuzziness on the conclusion side has a small influence on common applications 
where the next step after the fuzzy reasoning is the defuzzification. On the other 
hand, the lack of the fuzziness on the observation side can restrict applicability of 
the method. Moreover an extension of the original “FIVE” method was suggested 
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in [16], where the question of the fuzzy observation is handled by merging vague 
environments of the antecedent universes and the fuzzy observation. 

 
Figure 1 

Interpolation of two fuzzy rules (Ri: Ai→Bi), by the Shepard operator based FIVE, and for comparison 
the min-max CRI with COG defuzzification 

 
Figure 2 

Approximate scaling function s generated by non-linear interpolation, and the partition as the 
approximate scaling function describes it (A’, B’) 

An implementation of FIVE as a component of the FRI Matlab Toolbox [12] can 
be downloaded from [24] and [25]. 
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4 An Application Example: Room Surveillance with 
Obstacle and Wall Avoidance with a Mobile Robot 

In the demonstrative example of this paper, the FRI method FIVE was chosen, 
because it is application oriented, i.e. it is quick and simple, and hence it can be 
easily embedded into a direct robot navigation control. The example application of 
the paper is a room surveillance guidance control of a mobile robot. The goal is to 
control an unmanned robot capable of room surveillance by cycling through given 
waypoints within a room (exploration) with walls and moving obstacles 
avoidance. When the way of the robot seems to be blocked by an obstacle or by a 
wall, then the robot is capable of turning around and head in the opposite direction 
as a last resort. The order of the waypoints is a fixed sequence. This example 
configuration has four waypoints which correspond to the four corners of the 
room (see Fig. 3). 

The guidance control is built up from three separate controlling components: the 
selection of the next waypoint to approach, the wall and obstacle avoidance, and 
the heading direction change. 

 
Figure 3 

The room with the waypoints and obstacles (the two rectangles) where the robot (circle shaped object) 
can move. The shape of the room is a rectangle having a 4:3 side to side ratio. 

The selection of the next waypoint to approach component is determined 
according to the followings: the current position of the robot, the heading weights 
of the four waypoints, the need for direction changing and the current direction of 
the robot. The method for the selection is simple: assign the waypoint in the 
predefined sequence which follows the nearest waypoint to the robot. The 
observations needed for this component are the measured distances of the robot 
from each of the defined waypoints (dw1, dw2, dw3, dw4) and the selection state, 
which waypoints (sw1, sw2, sw3, sw4) is the robot headings towards. States 
characterize that whether the waypoint is actively selected or not. For expressing 
the distance from an arbitrary waypoint in the fuzzy rule base, the linguistic terms 
for the antecedent universes are given as the following: zerus (Z), large (L) and for 
expressing the state of the heading waypoint, there are only two antecedent 
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linguistic terms: true (T), false (F). The consequent of the rule base expressing the 
weight of the selected next waypoint (WW) it has only two linguistic terms: zerus 
(Z), large (L). The selection of the next waypoint to approach component has as 
many separate rule bases as the count of the pre-defined waypoints, and they have 
similar structure. In the example case this means four rule bases (having four 
waypoints), each needs to be evaluated with the same measured distances and 
state variables. Every conclusion is a normalized weight which is used to scale a 
vector pointing towards the corresponding waypoint. When these four scaled 
vectors are summarized the result will be the movement vector of the exploration 
controller component. 

Having the required observations and the strategy described above, the fuzzy rule 
bases can be constructed. As mentioned, four rule bases are required in this 
particular case: first to calculate the weight needed to take the robot towards the 
second waypoint, second to direct the robot to the third waypoint, third to take the 
robot to the fourth waypoint, and a fourth rule base to navigate the robot back to 
the first waypoint. In Table 1. four rule bases are shown merged together, rule base 
for the first waypoint selection has the normal typeset, rule base of the second 
waypoint selection has a bold typeset, the rule base for the third waypoint has an 
italic typeset, and the last rule base for the fourth waypoint selection is underlined. 

Table 1 
Waypoint selection weight rule base 

RW dw1 dw2 dw3 dw4 sw1 sw2 sw3 sw4 WW 

Rule 1 Z Z Z Z     Z 
Rule 2 L L L L T T T T L 
Rule 3 L L L L T T T T Z 
Rule 4 L L L L T T T T Z 
Rule 5 L L L L T T T T Z 
Rule 6 Z Z Z Z     L 

The rules are defined in the following form: 

RWi: If     dw1 = A1,i and dw2 = A2,i and dw3 = A3,i and dw4 = A4,i                            

 and sw1 = A5,i  and sw2 = A6,i  and sw3 = A7,i  and sw4 = A8,i  

 Then WW = Bi 

The rules in the first rule base (the normal typesetted values in Table 1) have the 
meanings as follows: the first rule means that when the corresponding waypoint  is 
reached by the robot then that waypoint should be abandoned, hence the weight of 
the waypoint will be zerus (Z). The second rule keeps the robot coming to the 
waypoint if it has been selected earlier. The third rule serves the purpose of 
keeping down the weight when the robot is going to the next waypoint, so do the 
fourth and fifth rules, but for the remaining two waypoints. The sixth, last rule 
means that when the robot had reached the previous waypoint in the sequence, it 
should head to this very waypoint. The remaining three rule bases are for the same 
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purpose but for the other three waypoints. With these rule bases the robot can 
cycle around the given waypoints, but when obstacles stand in its way further rule 
bases are required to handle the situation. 

The applied collision avoidance strategy consists of two parts: wall avoidance and 
obstacle avoidance. By the definition walls are the borders of the room and the 
obstacles are objects which can move freely inside the room. Avoiding walls is a 
simple procedure. Based on the distance from the four walls, a repulsion rate is 
calculated, which then can be used to compute a vector perpendicular to the 
corresponding wall. Observations of the wall and obstacle avoidance component 
are the measured distances from each of the walls (dw), and from each of the 
objects inside the room (do). The linguistic terms of the antecedent universes are: 
zerus (Z), small (S), medium (M), large (L), and for the consequent universe (AV): 
zerus (Z), small (S), large (L). Obstacle avoidance follows the same strategy. 
Summarizing the normalized wall and obstacle avoidance repulse vectors the 
result can overrun the maximum. In this case the length of the vector should be cut 
to the maximum allowed value. 

Based on the above described technique a simple fuzzy rule base can be built (see 
Table 2). The wall and obstacle avoidance component uses the same rule base for 
all the required conclusions only the input distances differ within every 
evaluation. The rules are defined in the following form: 

RColli: If dw = Ai Then AV = Bi 

Table 2 
Wall and obstacle avoidance weight rule base 

RColl dw , do AV 
Rule 1 Z L
Rule 2 S S
Rule 3 M Z
Rule 4 L Z

In the case if the way of the robot seems to be blocked in the current exploration 
direction, the robot can change its heading, by assigning the waypoints in the 
reverse order. This direction change decision is made by the heading direction 
change component. The observations needed for this component are the sum of 
movement rate of the robot and the collision avoidance vector (mr), the 
summarized rate of the length of the wall and obstacle avoidance vectors (ar), and 
finally a rate of exploration is added (er). It serves as a movement component 
weight. Since the robot could do some other types of movements than exploring 
(as part of another application), an exploration rate value could be also considered. 
The linguistic terms of the two antecedent universes of the heading direction 
change component are: zerus (Z) and large (L). The conclusion universe (DC), 
which tells whether to change the direction of the robot, the linguistic terms are: 
false (F) and true (T). The rule base consists only of three rules, which can be seen 
in Table 3. The rules are defined in the following form: 
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RDirChi: If er = A1,i and mr = A2,i and ar = A3,i   Then DC = Bi 

Table 3 
Direction changing decision rule base 

RDirCh er mr ar DC 
Rule 1 Z   F 
Rule 2 L Z L T 
Rule 3 L L  F 

Another rule base can be used to determine the new heading direction for the 
robot. For this subcomponent two observations are required: a value which tells 
whether a direction heading change is necessary (dirchg) (the conclusion above, 
see Table 3.) and the current heading direction (currdir). The linguistic terms for 
the antecedent universes are the following: for expressing the need of direction 
changing: true (T), false (F), for expressing the current direction and also for the 
consequent universe, which gives the new direction (ND): clockwise (C), counter 
clockwise (CC). The rule base is simple: when dirchg is F then ND will be the 
same as currdir, but when dirchg is T then ND will be the opposite of currdir.  

Having the rule bases for collision avoidance, direction changing decision and 
new heading direction, the original waypoint selection rule bases (Table 1) should 
be extended. New observations will be added: the current heading direction (dir) 
and a parameter expressing whether the heading direction was changed (dirchg). 
The newly added antecedent linguistic terms for the necessity of reversing the 
direction are: true (T), false (F). For the current direction: clockwise (C), counter 
clockwise (CC). The extended rule bases are shown on Table 4. The rules are 
defined in the following form: 

RWXi: If     dw1 = A1,i  and dw2 = A2,i and dw3 = A3,i and dw4 = A4,i  

 and  sw1 = A5,i  and sw2 = A6,i   and sw3 = A7,i and sw4 = A8,i  

 and  dir = A9,i   and dirch = A10,i                        

 Then WW = Bi 

Table 4 
Waypoint selection weight with direction changing rule base 

RW dw1 dw2 dw3 dw4 sw1 sw2 sw3 sw4 dir dirch WW 
Rule 1 Z Z Z Z       Z 
Rule 2 L L L L T T T T  F L 
Rule 3 L L L L T T T T  T Z 
Rule 4 L L L L L L L L T T T T CC T L 
Rule 5 L L L L L L L L T T T T C T L 
Rule 6 L L L L T T T T  F Z 
Rule 7 L L L L T T T T  F Z 
Rule 8 L L L L T T T T   Z 
Rule 9 Z Z Z Z     C F L 

Rule 10 Z Z Z Z     CC F L 
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Compared to the original waypoint selection rule base, four new rules were added. 
In the following the new rules are explained, according to the first rule base (see 
Table 1). Rule 3 stops the robot when a direction change is necessary. The fourth 
rule changes the direction if needed and if the previous heading was towards the 
next waypoint in the defined sequence. Rule 5 is similar to Rule 4, it changes the 
direction if required and the previous heading was the previous waypoint in order. 
Rule 6, 7 and 8 are the same as the third, fourth and fifth rule in the original 
waypoint selection rule base. Rule 9, 10 means that when the robot reaches the 
previous waypoint in the sequence, then it should head to the next waypoint. 

It is practical to arrange the evaluation of these rule bases and observation 
calculations in a loop. First the waypoint selection conclusions should be 
calculated, the result vector should be added to the current position of the robot. 
With this new position the distances from the walls and obstacles should be 
computed, then the wall and obstacle avoidance fuzzy rule bases should be 
evaluated, these results should be summarized with the current position also. This 
will be the next valid position of the robot. Finally we have all the required data to 
get the conclusion for the direction changing. If the direction has to be changed, 
the direction state variable should be inverted and in the next iteration it should 
take effect. Following this procedure gives a working model of surveillance 
guidance and obstacle avoidance. 
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Conclusion 

Applying the FIVE fuzzy rule interpolation method and sparse fuzzy rule bases 
described as a demonstration example of this paper, a room surveillance guidance 
control strategy was implemented. (The source code of the working example can 
be freely downloaded from [25].) Compared to the classical complete fuzzy rule 
base solutions, the main benefit of this approach is the reduced rule base size. For 
building a complete fuzzy rule base with the same strategies, 2(2n+2)+8+4+4 (where 
n is number of the defined waypoints) fuzzy rules would be needed, which is 1040 
with the four waypoints of the given example. But the fuzzy rule interpolation and 
sparse fuzzy rule base solution of this paper has only n*(6+n)+3+4+4, which is 
only 51 with four waypoints. This rule base size is easily implementable even in 
embedded FRI fuzzy logic controllers. Therefore the main conclusion of the 
paper, that there are application areas, where FRI methods and the corresponding 
sparse rule bases turns strategies to be tractable sizes even with numerous input 
dimensions. 
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