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Abstract

This paper presents an examination which relates the sensitivity of the Linear
Matrix Inequality based control design to the type of created convex hull defined
by the Polytopic Model. We examine the aforementioned through the controlde-
sign of the Parallel type Double Inverted Pendulum. We use the TP model trans-
formation to derive various convex TP models of the Parallel type DoubleInverted
Pendulum. Then we base the design on the feasibility of Linear Matrix Inequalities
derived under the Parallel Distributed Compensation based control design frame-
work. Finally we use numerical simulation to compare the resulting control perfor-
mances.

1 Introduction

In the paper we examine the relationship between the type of convex hull and
the feasibility of the Linear Matrix Inequalities (LMIs) derived under the Parallel Dis-
tributed Compensation (PDC) based control design framework. Based on comparisons,
the paper concludes that the feasibility of the Linear Matrix Inequalities (LMIs) and
the resulting control performance is very sensitive to the type of convex hull derived.
We examine this relationship via the control of a Parallel type Double Inverted Pendu-
lum (PDIP) system. The system consists of two pendulums, with different lengths and
weights, and a cart, on which a force acts as the actuator (seeFigure 1). The control
goal is to stabilize the pendulums in an upright position.

1.1 Proposed control design

We propose a mathematically non-heuristic, tractable control design. This solution
is based on numerical steps that can be executed automatically with minimal human
interaction in reasonable time.

First we derive the differential equations of motion via the physical considerations
of the system and derive its quasi LPV (qLPV) state-space model. In the second step
we execute the Tensor Product model (TP model) transformation to have such a poly-
topic representation of the qLPV model whereupon Parallel Distributed Compensation
(PDC) design can immediately be executed. We derive four different convex type TP
polytopic models with minimal complexity (e.g. with minimal number of LTI ver-
tex components), where the LTI vertex components determinea CNO (Convex NOr-
malised) type tight convex hull of the system. In this regard, first we show that the
PDIP can exactly be given by a TP type polytopic model with minimal (144) number
of LTI vertex systems.



In the second step we derive a controller including decay rate control design (find-
ing largest Lyapunov exponent) that guarantees asymptoticstability and constraint on
the control value. We base the design on the feasibility of Linear Matrix Inequali-
ties (LMIs) derived under the PDC control design framework proposed by Tanaka and
Wang [1]. We examine several CNO type tight convex hulls, andexamine the feasibility
of the corresponding LMIs.

2 Notations and General Principles

The purpose of this section is devoted to introduce the basicprinciples used in the
current control design, and also, the notations utilised inthe article.

2.1 Nomenclature

• a,b, . . .: scalar values;

• a,b, . . .: vectors;

• A,B, . . .: matrices;

• A,B, . . .: tensors;

• RI1× I2× ...× IN : vector space of real valued (I1 × I2 × . . . × IN)-tensors;

• A+: the pseudo inverse of matrixA

• A(n): n-mode matrix of tensorA ∈ RI1× I2× ...× IN

• A ×n U: n-mode matrix-tensor product;

• rankn(A): n-mode rank of tensorA, that isrankn(A) = rank(A(n));

• A
N
⊠

n=1
Un: multiple product asA×1 U1 ×2 U2 ×3 . . . ×N UN;

• Subscript defines lower order: for example, an element of matrix A at row-
column numberi, j is symbolized as (A)i, j = ai, j . Systematically, theith column
vector ofA is denoted asai , i.e. A =

[

a1 a2 · · ·
]

.

• (·)i, j,n, . . .: are indices;

• (·)I ,J,N, . . .: index upper bound: for example:i = 1..I , j = 1..J, n = 1..N or
in = 1..In.

2.2 Definitions

Consider the following linear parameter-varying (LPV) state-space model:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (1)

y(t) = C(p(t))x(t) + D(p(t))u(t),

with inputu(t) ∈ Rk, outputy(t) ∈ Rl and state vectorx(t) ∈ Rm. The system matrix

S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

∈ R(m+k)×(m+l) (2)



is a parameter-varying object, wherep(t) ∈ Ω is a time-varyingN-dimensional param-
eter vector, and is an element of the closed hypercubeΩ = [a1,b1] × [a2,b2] × · · · ×
[aN,bN] ⊂ RN. Parameterp(t) can also include some elements ofx(t), in this case it
is termed as quasi LPV (qLPV) model. Therefore this type of model is considered to
belong to the class of non-linear models.

Definition 1 (Finite Element polytopic model) :

S(p(t)) =
R

∑

r=1

wr (p(t))Sr , (3)

S(p(t)) in (2) is given for any parameter vectorp(t) as the parameter-varying com-
bination of linear time-invariant (LTI) system matricesSr ∈ R

(m+k)×(m+l) also called
vertex systems. The combination is defined by the multi-variable weighting functions
wr (p(t)) ∈ [0,1]. Finite element means that R is bounded(R< ∞).

Definition 2 (Finite element TP type polytopic model) : We say TP model for brevity.
S(p(t)) in (2) is given for any parameterp(t) as the parameter varying combination of
linear time-invariant (LTI) system matricesSi1i2...iN ∈ R

(m+k)×(m+l):

S(p(t)) =
I1

∑

i1=1

I2
∑

i2=1

. . .

IN
∑

iN=1

N
∏

n=1

wn,in(pn(t))Si1,i2,...,iN , (4)

that is with compact tensor notation:

S(p(t)) = S
N
⊠

n=1
wn(pn(t)), (5)

where the (N+2)-dimensional coefficient tensorS ∈ RI1×I2×...IN×(m+k)×(m+l) is con-
structed from LTI vertex systemsSi1i2...iN and row vectorwn(pn(t)) ∈ [0,1], (in = 1 . . . In)
contains one variable and continuous weighting functions wn,in(pn(t)) ∈ [0,1], (in =
1 . . . In). The function wn,in(pn(t)) is the in-th weighting function defined on the n-th
dimension ofΩ, and pn(t) is the n-th element of vectorp(t). Note that the dimensions
ofΩ are respectively assigned to the elements of the parameter vectorp(t).

Remark 1 TP model (5) is a special class of polytopic models (3), wherethe weighting
functions are decomposed to the Tensor Product of one variable functions.

Definition 3 (Convex type TP model) : The TP model (5) is convex if the weighting
functions satisfy

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0,1], (6)

∀n, pn(t) :
In

∑

i=1

wn,i(pn(t)) = 1.

Definition 4 (NO/CNO type TP model) The convex TP model is a normal (NO) type
model, if itsw(p) weighting functions areNormal (NO), that is, if it satisfies (6) and the
largest value of all weighting functions is 1. Also, it isClose to NOrmalif it satisfies
(6) and the largest value of all weighting functions is 1 or close to 1.



Remark 2 Let us introduce a geometric interpretation to the conceptsdefined above.
We have a parameter-space in which each point can be interpreted as an LTI vertex
system. With the introduction of the previous concepts, we can imagine the vertex
systems of the Convex TP model as the convex hull of the systemmatrix S(p(t)). This
means that we can represent eachsystem matrixS(p(t)) in the parameter-space as
a linear combination of these vertices. Furthermore, if this hull is NO/CNO type, it
follows that in those points, that the weighting function is1 (or is close to 1), the
system matrix takes on the value of the specific vertex systemthat is related to that
weighting function (or is very close to it in theL2-norm).

Remark 3 Various further types of convex TP models are defined in papers [2,3].

3 Parallel type Double Inverted Pendulum system

This section is divided into 3 parts. The first part deals withthe presentation of the
PDIP system. In the second part, we derive the dynamic equations of the system, and
in the final part we present the equations of motion in a qLPV form.

Figure 1: PDIP (Parallel type Double In-
verted Pendulum) system

3.1 Description of the PDIP

The PDIP system is shown in Figure 1. The system consists of a straight line rail,
a cart attached to it, a longer (1) and a shorter (2) pendulum.The cart is driven by
an actuator force (F), and is able to move sideways. The force moves the cart solely
in 1-Dimension. We assume homogenous weight distribution in each component. We
also disregard friction. The length and mass of the pendulums are different, so they
have different dynamics which enables control of the system to a certain degree. The
usedp(t) ∈ Ω and notations of PDIP are given in Table 1.

3.2 qLPV model of the PDIP

We express the required system matrix:

S(p(t)) =
(

E−1(p(t))Ã(p(t)) E−1(p(t))B̃(p(t))
)

=

(

A(p(t)) B(p(t))
)

(7)



Table 1: Parameters of the PDIP model
Symbols Values Unit Description

mc 1 kg mass of the cart
x m horizontal position of the cart

m1 0.3 kg mass of the 1st pendulum
m2 0.1 kg mass of the 2nd pendulum
l1 0.6 m half length of the 1st pendulum
l2 0.2 m half length of the 2nd pendulum
α1 rad angular position of the 1st pendulum
α2 rad angular position of the 2nd pendulum
F N actuator force on the cart
g 9.81 m

s2 standard gravity

A(p(t))1,1 = A(p(t))1,2 = A(p(t))1,3 = A(p(t))1,5 = A(p(t))1,6 = 0

A(p(t))2,1 = A(p(t))2,2 = A(p(t))2,3 = A(p(t))2,4 = A(p(t))2,6 = 0

A(p(t))3,1 = A(p(t))3,2 = A(p(t))3,3 = A(p(t))3,4 = A(p(t))3,5 = 0

A(p(t))4,4 = A(p(t))5,4 = A(p(t))6,4 = 0

A(p(t))1,4 = A(p(t))2,5 = A(p(t))3,6 = 1

A(p(t))4,2 = −
m1gsin(α1(t)) cos(α1(t))

α1(t)A3(t)

A(p(t))4,3 = −
m2gsin(α2(t)) cos(α2(t))

α2(t)A3(t)

A(p(t))4,5 =
4
3

m1l1α̇1(t) sin(α1(t))
A3(t)

A(p(t))4,6 =
4
3

m2l2α̇2(t) sin(α2(t))
A3(t)

A(p(t))5,2 =
(M +m1 + A2(t)) gsin(α1(t))

l1α1(t)A3(t)

A(p(t))6,3 =
(M +m2 + A1(t)) gsin(α2(t))

l2α2(t)A3(t)

A(p(t))5,3 =
3
4

m2gsin(α2(t)) cos(α2(t)) cos(α1(t))
l1α2(t)A3(t)

A(p(t))6,2 =
3
4

m1gsin(α1(t)) cos(α1(t)) cos(α2(t))
l2α1(t)A3(t)

A(p(t))5,5 = −
m1α̇1(t) sin(α1(t)) cos(α1(t))

A3(t)

A(p(t))6,6 = −
m2α̇2(t) sin(α2(t)) cos(α2(t))

A3(t)



A(p(t))5,6 = −
m2l2α̇2(t) cos(α1(t)) sin(α2(t))

l1A3(t)

A(p(t))6,5 = −
m1l1α̇1(t) sin(α1(t)) cos(α2(t))

l2A3(t)

B(p(t)) =
[

0 0 0 4
3

1
A3(t) −

cos(α1(t))
l1A3(t) −

cos(α2(t))
l2A3(t)

]T
, (8)

where:

A1(t) :=

(

1−
3
4

cos2(α1(t))

)

m1,

A2(t) :=

(

1−
3
4

cos2(α2(t))

)

m2, (9)

A3(t) :=
4
3

(M + A1(t) + A2(t)) .

4 Determination of several CNO type TP models

In this section we execute the TP model transformation on theqLPV model of the
PDIP system (7-9). We derive 4 different CNO type TP models, and we examine the
feasibility of the corresponding LMIs.

4.1 Determination of the CNO type TP model

In the following we detail the steps of the TP model transformation we apply to
the PDIP system. Note that these steps can automatically be executed by computer via
numerical algorithms (http://tptool.sztaki.hu/).

4.1.1 The parameter spaceΩ

First we determine the parameter space of interest where thePDIP system varies
nonlinearly. Namely we define the intervals of each parameter values such as:

Ω =





























−π/12 π/12
−π/12 π/12
−π π

−π π





























.

Note that these intervals can be arbitrarily defined from theviewpoint of numerical
execution of the TP model transformation.

4.1.2 Determination of the TP model with minimal components

According to the algorithm of the TP model transformation, first we discretize the
system matrixS(p(t)) of the PDIP system over an equidistant rectangular grid inΩ.
Then we execute Compact Higher Order Singular Value Decomposition (CHOSVD) to
find the minimal number of weighting functions, hence the vertex systems of the TP
model. Let the discretization grid beM × M × M × M whereM = 50 inΩ. Then we
compute the system matrix of PDIP over each grid point, and westore the resulting ma-
tricesSd

i, j,k,l , (i, j, k, l = 1 . . .M) in tensorSd, where superscript ’d’ means discretized.



This step yields tensorSd ∈ R50×50×50×50×6×7(Note that the size of the parameter de-
pendent system matrixS(p(t)) is 6× 7). The rank ofSd on the first four dimensions
are 6,6,2 and 2 respectively. From this we conclude that the qLPV model of the PDIP
can be represented by a TP polytopic model where the minimal number of the vertex
systems are 6×6×2×2 = 144. We execute CHOSVD [4] on the first four dimensions
of Sd:

Sd
= S

4
⊠

n=1
Un.

Here tensorS ∈ R6×6×2×2×6×7 contains vertex systemsSi, j,k,l(i = 1 . . . 6, j = 1 . . . 6, k =
1 . . . 2, l = 1 . . . 2).

4.1.3 CNO type TP model

According to the concept of the TP model transformation, thecolumns of the matri-
cesUn determine the discretized weighting functions, namely, the values of the weight-
ing functions over the discretization grid. According to Definition 3 of the convex TP
model, the sum of the weighting functions must be 1 over any parameter values, and
their values must not be negative. This means that the sum of the rows of matricesUn

must be equal to 1 and their elements must not be negative. TheTP model transforma-
tion is capable of transforming

S
4
⊠

n=1
Un

to
S

4
⊠

n=1
Un = S

CO 4
⊠

n=1
UCO

n ,

in such a way, that the sum of the rows of matricesUCO
n equal 1 and their values

are not negative. Superscript ’CO’ denotes ’COnvexity’. (See Definition 3). Since
this transformation is not unique, we can define various matricesUCO

n . We select the
CNO-type (Close to NOrmalised) transformation here from [2], that guarantees, that
as many columns of matricesUCO

n as possible contain element 1 and the maximum
of the rest of the columns get close to 1. This actually guarantees that whenwn is
generated fromUn, later as many weighting functions as possible achieve 1, and the rest
of them get close to 1. Since the weighting functions define the convex hull, the CNO
type weighting functions determine a tight convex hull of the LTI systems where as
many of the vertex systemsSCNO

i, j,k,l as possible will be equal to the parameter dependent
system matrixS(p(t)) of the PDIP over certain parameter vectorp(t) and the rest of the
SCNO

i, j,k,l get close to the system matrix of the PDIP in the sense ofL2-norm. For further
details about CNO transformation and geometrical discussion we refer to papers [2,3].
The type of convex hull defined by the polytopic model considerably influences the
feasibility of the LMI based control design and the resulting control performance, see
later. In conclusion the resulting decomposition with the CNO transformation is:

Sd
= SCNO 4

⊠
n=1

UCNO
n .

4.1.4 Determination of the weighting functions

According to the concept of the TP model transformation we numerically recon-
struct the weighting functions from matrixUCNO

n . The weighting functions can be
determined over any points by the help of the givenS(p(t)).

The resulting weighting functions are depicted in Figure 2-4.
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Figure 2: Weighting functions resulting Infeasible LMIs (CNO type TP Model 1 and
2)
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Figure 3: Weighting functions resulting Feasible LMIs (CNOtype TP Model 3 and 4)

4.2 The resulting CNO type TP models

The resulting TP model of the PDIP system is:
(

ẋ(t)
y(t)

)

= SCNO 4
⊠

n=1
wCNO

n (pn(t))

(

x(t)
u(t)

)

. (10)

Without tensor operations it takes the form of:

(

ẋ(t)
y(t)

)

=

4
∑

i=1

4
∑

j=1

2
∑

k=1

2
∑

l=1

wCNO
1,i (x2(t))wCNO

2, j (x3(t))wCNO
3,k (x5(t))wCNO

4,l (x6(t))(A i, j,k,lx(t) + Bi, j,k,lu(t)).

(11)
First, we generate three different weighting function systems (see Figures 2-3). Sub-

sequently, to generate Model 4, we arbitrarily choose 2 seperate weighting function
bundles from different models (Model 1 and Model 3) on seperate dimensions, and
we utilise them in the same design. For this new model we have to recalculate the
corresponding core tensor.
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Figure 4: Weighting functions of ˙α1 and ˙α2 for CNO type TP Models 1-4

In order to conclude this section, we should emphasize here,that all the above steps
can be readily executed via numerical steps automatically (http://tptool.sztaki.hu/).
The result is a non-linear TP polytopic model, that defines a tight (CNO type) convex
hull (in order to decrease the conservativeness of the control design) and hence, it is
ready for LMI control design.

5 Feasibility of the LMI based design

First of all we specify the desired control performance. We use a robust control
design strategy. We design asymptotic stability with decayrate control (finding the
largest Lyapunov exponent) to have a fast controller and we have constraints on the
control value(µ = 40N) according to physical considerations.

Our control design is based on LMIs developed under the PDC framework. The
key idea of the PDC framework is that the non-linear controller has the same polytopic
structure as the model has. In our case it means that the controller has the same CNO
type TP form, namely, the same weighting functions as the model has. Thus, we search
the feedback gainsFi, j,k,l over the weighting function system of the TP model as:

u(t) = −(
6

∑

i=1

6
∑

j=1

2
∑

k=1

2
∑

l=1

wCNO
1,i (x)wCNO

2, j (x)wCNO
3,k (x)wCNO

4,l (x)Fi, j,k,l)x(t), (12)

that is with compact tensor notation:

u(t) = −F CNO 4
⊠

n=1
wCNO

n (pn(t))x(t). (13)

Thus, we readily substitute the vertex components of these models into the follow-
ing LMIs.

Theorem 1 (Decay rate control) Assuming convex type TP Model (10) and controller
(13), solve:

maximize
X,M1,...,Mg

α subject to

X > 0

−XAT
r − ArX +MT

r BT
r + BrM r − 2αX > 0 (14)

−XAT
r − ArX − XAT

s − AsX +MT
s BT

r + BrM s +MT
r BT

s + BsM r − 4αX ≥ 0



for r < s ≤ R, except the pairs(r, s) such that∀p(t) : wr (p(t))ws(p(t)) = 0, and where
the feedback gains are determined from the solutionsX andM r by

Fr = M rX−1. (15)

Theorem 2 (Constraint on the control value) Assume that‖x(0)‖2 ≤ φ, wherex(0)
is unknown, but the upper boundφ is known. The constraint‖u(t)‖2 ≤ µ is enforced at
all times t≥ 0 if the LMIs

φ2I ≤ X (16)
(

X M T
r

M r µ2I

)

≥ 0 (17)

hold for r = 1, . . . ,R.

The Decay rate control LMI-s (15) were used for this design because the upper
bound of the input force we setµ = 40N, the upper bound to the state vector 0.1. The
implemented decay rate was chosen as 0.8. By using the LMI solver of MATLAB Ro-
bust Control Toolbox we solve all the previous LMIs simultaneously, we find that the
in the case of Model 1 and 2, the LMIs are infeasible, while in the case of Model 3 and
4 the resulting LMIs are feasible, and we obtain the feedbackgains of Controllers 3 and
4 respectively. In the following the controller generated with Model 3 shall be named
Controller 3, the customly created controller from Model 4 shall be called Controller 4.

6 Resulting control performance

The stabilization properties are found on Figure 5. Both overshoot and stabilization
time are smaller with Controller 4, briefly Controller 4 produced better results. The
stabilization time domain can be found on Figure 6. We also marked the parameter
domainΩ, and the upper bound on the initial state valueΦ. Here we may also notice
the difference between the 2 controllers, with Controller 4 having agreater stabilization
domain.

7 Conclusion

We conclude the paper with the following results:

1. The type of convex hull considerably influences the feasibility of the correspond-
ing LMIs. Finding the proper convex hull vastly improved thecontrol perfor-
mances.

2. The TP model transformation lets us creatively manipulate the convex hull via
manipulation of the weighting function system, which resulted a better control
performance.

3. Besides the 2 mentioned statements, we remark here, that the best control per-
formance has been achieved as a combination of a convex hull with infeasible
corresponding LMIs, and a convex hull with feasible corresponding LMIs.
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Figure 5:α1 & α2 parameters for Controllers 3 and 4
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