Some Extensions of Migrativity for Triangular Norms

János Fodor and Imre J. Rudas

John von Neumann Faculty of Informatics
Budapest Tech, Bécsi út 96/b, H-1034 Budapest, Hungary
E-mails: Fodor,Rudas@bmf.hu

Abstract: In this paper we introduce and describe continuous triangular norms that are migrative with respect to another fixed t-norm T_{0}, in particular to the three prototypes T_{M}, $T_{\mathbf{P}}$ and $T_{\mathbf{L}}$. Depending on characteristic properties of T_{0}, classes of nilpotent and strict migrative t-norms are naturally formed. In these cases the characterization and construction is carried out by solving functional equations for the generators. In the third case an ordinal-sum-like construction is resulted.
Keywords: triangular norm, migrative property, additive generator, functional equations.

1 Introduction

In [3] the authors introduced the new term - α-migrative - for a class of binary operations as follows.

Definition 1. Let α be in $] 0,1\left[\right.$. A binary operation $T:[0,1]^{2} \rightarrow[0,1]$ is said to be α-migrative if we have

$$
\begin{equation*}
T(\alpha x, y)=T(x, \alpha y) \quad \text { for all } x, y \in[0,1] . \tag{1}
\end{equation*}
$$

One can easily see that the following function $T_{\beta}:[0,1]^{2} \rightarrow[0,1]$ is α-migrative (where $\beta \in[0,1]$):

$$
T_{\beta}(x, y)= \begin{cases}\min (x, y) & \text { if } \max (x, y)=1 \tag{2}\\ \beta x y & \text { otherwise }\end{cases}
$$

In fact, thus defined function T_{β} is a triangular norm for any $\beta \in[0,1]$.
A triangular norm (t-norm for short) $T:[0,1]^{2} \rightarrow[0,1]$ is an associative, commutative, non-decreasing function such that $T(1, x)=x$ for all $x \in[0,1]$. Prototypes of t -norms are the minimum $T_{\mathbf{M}}(x, y)=\min (x, y)$, the product $T_{\mathbf{P}}(x, y)=$ $x y$, and the Łukasiewicz t-norm $T_{\mathbf{L}}(x, y)=\max (x+y-1,0)$. Obviously, the product t-norm $T_{\mathbf{P}}$ is α-migrative for any $\left.\alpha \in\right] 0,1[$.

As it is well-known, each continuous Archimedean t-norm T can be represented by means of a continuous additive generator (see e.g. [6]), i.e., a strictly decreasing continuous function $t:[0,1] \rightarrow[0, \infty]$ with $t(1)=0$ such that

$$
\begin{equation*}
T(x, y)=t^{(-1)}(t(x)+t(y)) \tag{3}
\end{equation*}
$$

where $t^{(-1)}:[0, \infty] \rightarrow[0,1]$ is the pseudo-inverse of t, and is given by

$$
t^{(-1)}(u)=t^{-1}(\min (u, t(0)))
$$

A triangular subnorm (t-subnorm for short) $T:[0,1]^{2} \rightarrow[0,1]$ is an associative, commutative, non-decreasing function such that $T(x, y) \leq \min (x, y)$ for all $x, y \in$ $[0,1]$. Obviously, any t-norm is a t-subnorm. Notice that the function $T_{\beta}^{\prime}(x, y)=$ $\beta x y$ for all $x, y \in]$ is a t -subnorm that is also α-migrative for any $\alpha \in] 0,1[$.

Consider a t-norm $T:[0,1]^{2} \rightarrow[0,1]$. Then T satisfies the associativity functional equation (4), which is well-known in several theoretical and applied fields, and is formulated as follows $(x, y, z \in[0,1])$:

$$
\begin{equation*}
T(T(x, y), z)=T(x, T(y, z)) \tag{4}
\end{equation*}
$$

If we fix the value of x, say $x=\alpha$, then equation (4) remains valid for T. Let us choose one particular t-norm T_{0}, and consider the following functional equation $(x, y \in[0,1])$:

$$
\begin{equation*}
T\left(T_{0}(\alpha, x), y\right)=T\left(x, T_{0}(\alpha, y)\right) \tag{5}
\end{equation*}
$$

Then, obviously, T_{0} itself is a solution. The question is natural: is there any solution T of (5) that differs from T_{0} ? If so, determine and characterize all solutions.

The generalized associativity equation has also been studied and solved, see [1,7]. It can be written as follows:

$$
\begin{equation*}
F(G(x, y), z)=H(x, K(y, z)) \tag{6}
\end{equation*}
$$

In this general framework the particular form of $H=F, K=G$ in (6) corresponds to (5).

When $T_{0}=T_{\mathbf{P}}$, one can recognize α-migrativity (1) as a particular case of (5). The next definition extends the migrative property as follows.

Definition 2. Let α be in $] 0,1\left[\right.$ and T_{0} a fixed triangular norm. A binary operation $T:[0,1]^{2} \rightarrow[0,1]$ is said to be α-migrative with respect to T_{0} (shortly: $\left(\alpha, T_{0}\right)$ migrative) if we have (5) for all $x, y \in[0,1]$.

Notice that if a t -norm T is $\left(\alpha, T_{0}\right)$-migrative then we have

$$
\begin{equation*}
T(\alpha, y)=T_{0}(\alpha, y) \quad \text { for all } y \in[0,1] . \tag{7}
\end{equation*}
$$

This follows from (5) by substituting $x=1$.
In the present paper we study three particular cases of $\left(\alpha, T_{0}\right)$-migrative t-norms according to the three prototypes. That is, when $T_{0}=T_{\mathbf{M}}$, when $T_{0}=T_{\mathbf{P}}$, and when $T_{0}=T_{\mathbf{L}}$. Notice that the second case was investigated in [4], where all the details and proofs can also be found. The other cases will be published in our forthcoming paper [5].

$2\left(\alpha, T_{M}\right)$-migrative Continuous Triangular Norms

In the present case the $\left(\alpha, T_{\mathrm{M}}\right)$-migrative property is read as follows:

$$
\begin{equation*}
T(\min (\alpha, x), y)=T(x, \min (\alpha, y)) \quad \text { for all } x, y \in[0,1] \tag{8}
\end{equation*}
$$

Now (7) implies that $T(\alpha, y)=\min (\alpha, y)$ for all $y \in[0,1]$.
The description of all $\left(\alpha, T_{\mathbf{M}}\right)$-migrative continuous triangular norms is given in the following theorem. For the proof see [5].

Theorem 1. A continuous t-norm T is $\left(\alpha, T_{\mathbf{M}}\right)$-migrative if and only if there exist two continuous t-norms T_{1} and T_{2} such that T can be written in the following form:

$$
T(x, y)= \begin{cases}\alpha T_{1}\left(\frac{x}{\alpha}, \frac{y}{\alpha}\right) & \text { if } x, y \in[0, \alpha] \\ \alpha+(1-\alpha) T_{2}\left(\frac{x-\alpha}{1-\alpha}, \frac{y-\alpha}{1-\alpha}\right) & \text { if } x, y \in[\alpha, 1] \\ \min (x, y) & \text { otherwise } .\end{cases}
$$

$3\left(\alpha, T_{\mathrm{P}}\right)$-migrative Continuous Triangular Norms

The $\left(\alpha, T_{\mathbf{P}}\right)$-migrative property now is read as follows:

$$
\begin{equation*}
T(\alpha x, y)=T(x, \alpha y) \quad \text { for all } x, y \in[0,1] \tag{9}
\end{equation*}
$$

This is the original α-migrativity, and (7) implies that $T(\alpha, y)=\alpha y$ for all $y \in$ $[0,1]$.

We have shown that the migrative property is rather strong for a continuous tnorm: it implies that the t-norm cannot have idempotent elements, and cannot be nilpotent.

Theorem 2. Let T be a continuous t-norm. If T is α-migrative then T is strict.
It is easy to conclude (see [3]) that a strict t-norm T with additive generator t is α-migrative if and only if

$$
\begin{equation*}
t(\alpha x)-t(x)=t(\alpha y)-t(y) \quad \text { for all } x, y \in[0,1] \tag{10}
\end{equation*}
$$

Equation (10) says that the difference $t(\alpha x)-t(x)$ is independent of x. More exactly, if we chose $y=1$ in (10), this independent difference can be obtained as $t(\alpha x)-t(x)=t(\alpha)$. We write it as follows:

$$
\begin{equation*}
t(\alpha x)=t(\alpha)+t(x) \quad \text { for all } x \in[0,1] \tag{11}
\end{equation*}
$$

In the next theorem we provide the general solution of the functional equation (11). It is based on the important fact that the restriction of t to the interval $[\alpha, 1]$ uniquely determines t on each subinterval $\left[\alpha^{k+1}, \alpha^{k}\right]$, progressing from left to right.

Theorem 3. Suppose t is an additive generator of a strict t-norm. Then t satisfies the functional equation (11) if and only if there exists a continuous, strictly decreasing function t_{0} from $[\alpha, 1]$ to the non-negative reals with $t_{0}(0)<+\infty$ and $t_{0}(1)=0$ such that

$$
\begin{equation*}
\left.\left.t(x)=k \cdot t_{0}(\alpha)+t_{0}\left(\frac{x}{\alpha^{k}}\right) \quad \text { if } x \in\right] \alpha^{k+1}, \alpha^{k}\right] \tag{12}
\end{equation*}
$$

where k is any non-negative integer.
Unfortunately, none of the famous t-norm families (like Frank, Hamacher, Dombi, Alsina) are migrative, except the particular case of $t(x)=-\log x$, or equivalently, $T(x, y)=T_{\mathbf{P}}(x, y)=x y$.

This results is illustrated in the next figure with $\alpha=\frac{3}{4}, t_{0}(x)=4-4 x$ for $x \in\left[\frac{3}{4}, 1\right]$. Then $t\left(\left(\frac{3}{4}\right)^{k}\right)=k$, and t is linear in between.

Figure 1
Additive generator of a $3 / 4$-migrative t-norm
For further results for instance on the construction of smooth additive generators and proofs we refer to [4].

$4\left(\alpha, T_{\mathrm{L}}\right)$-migrative Continuous Triangular Norms

In the present case the $\left(\alpha, T_{\mathbf{L}}\right)$-migrative property is read as follows:

$$
\begin{equation*}
T(\max (\alpha+x-1,0), y)=T(x, \max (\alpha+y-1,0)) \quad \text { for all } x, y \in[0,1] \tag{13}
\end{equation*}
$$

Now (7) implies that $T(\alpha, y)=\max (\alpha+y-1,0)$ for all $y \in[0,1]$.
The description of all $\left(\alpha, T_{\mathbf{L}}\right)$-migrative continuous triangular norms is given now. For proofs and more details see [5].

Lemma 1. Assume that T is a continuous t-norm that is $\left(\alpha, T_{\mathbf{L}}\right)$-migrative. Then there exists an automorphism φ of the unit interval such that $T=T_{\mathbf{L}}^{\varphi}$. That is, we have

$$
\begin{equation*}
T(x, y)=T_{\mathbf{L}}^{\varphi}(x, y)=\varphi^{-1}(\max (\varphi(x)+\varphi(y)-1,0)) \quad \text { for all } x, y \in[0,1] \tag{14}
\end{equation*}
$$

Taking into account the functional form of T given in (14), the equation (12) defining ($\alpha, T_{\mathbf{L}}$)-migrativity has the following form:

$$
\begin{aligned}
\varphi^{-1}(\max [\varphi(\max (\alpha+x-1,0))+\varphi(y)-1,0]) & = \\
& =\varphi^{-1}(\max [\varphi(x)+\varphi(\max (\alpha+y-1,0))-1,0])
\end{aligned}
$$

If we apply φ to both sides of this equality we get the following equivalent form of $(14)(x, y \in[0,1])$:

$$
\begin{align*}
& \max [\varphi(\max (\alpha+x-1,0))+\varphi(y)-1,0]= \\
& \quad=\max [\varphi(x)+\varphi(\max (\alpha+y-1,0))-1,0] \tag{15}
\end{align*}
$$

This equation implies that

$$
\varphi(\max (\alpha+x-1,0))+\varphi(y)>1 \Longleftrightarrow \varphi(x)+\varphi(\max (\alpha+y-1,0))>1
$$

In particular, it is absolutely necessary for having these strict inequalities that $\alpha+$ $x>1$ and $\alpha+y>1$. In this case we can write

$$
\begin{equation*}
\alpha+x-1>\varphi^{-1}(1-\varphi(y)) \Longleftrightarrow \alpha+y-1>\varphi^{-1}(1-\varphi(x)) \tag{16}
\end{equation*}
$$

and for such x, y the automorphism φ must satisfy the following functional equation:

$$
\begin{equation*}
\varphi(\alpha+x-1)+\varphi(y)=\varphi(x)+\varphi(\alpha+y-1) \tag{17}
\end{equation*}
$$

As a consequence of (16) and (17) we get (by choosing $y=1$) that

$$
\begin{equation*}
\alpha>1-x \Longleftrightarrow \alpha>\varphi^{-1}(1-\varphi(x)) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(\alpha+x-1)=\varphi(\alpha)+\varphi(x)-1 \tag{19}
\end{equation*}
$$

In addition, continuity of φ implies also that $\alpha=1-x$ if and only if $\alpha=$ $\varphi^{-1}(1-\varphi(x))$. That is,

$$
\begin{equation*}
\varphi(\alpha)+\varphi(1-\alpha)=1 \tag{20}
\end{equation*}
$$

If we take into account (20) in (19) we get

$$
\begin{equation*}
\varphi(x-(1-\alpha))=\varphi(x)-\varphi(1-\alpha) \tag{21}
\end{equation*}
$$

That is, if we know φ on the interval $[1-\alpha, 1]$ then equation (21) defines φ on $[0, \alpha]$.
Theorem 4. Assume that $\alpha<1 / 2$. A t-norm $T(x, y)=\varphi^{-1}(\max (\varphi(x)+\varphi(y)-$ $1,0))$ is $\left(\alpha, T_{\mathbf{L}}\right)$-migrative if and only if there exist automorphisms ψ_{0} and ψ_{1} of the unit interval and a real number $0<\gamma<1 / 2$ such that

$$
\varphi(x)= \begin{cases}\gamma \psi_{0}\left(\frac{x}{\alpha}\right) & \text { if } 0 \leq x \leq \alpha, \tag{22}\\ (1-2 \gamma) \psi_{1}\left(\frac{x-\alpha}{1-2 \alpha}\right)+\gamma & \text { if } \alpha<x<1-\alpha, \\ \gamma \psi_{0}\left(\frac{x-(1-\alpha)}{\alpha}\right)+1-\gamma & \text { if } 1-\alpha \leq x \leq 1\end{cases}
$$

Complementary to this result, we have to consider the case when $\alpha \geq 1 / 2-$ that is, when $\alpha \geq 1-\alpha$. We start from an arbitrary automorphism ψ_{0} of the unit interval, a number $\gamma \in] 0,1[$, and define a piece of the automorphism φ in (15) as follows:

$$
\begin{equation*}
\varphi(x)=\gamma \cdot \psi_{0}\left(\frac{x-\alpha}{1-\alpha}\right)+1-\gamma, \quad x \in[\alpha, 1] \tag{23}
\end{equation*}
$$

We have that $\varphi(\alpha)=1-\gamma$.
Denote by n the largest positive integer k such that $k \alpha-(k-1)>0$. We can extend the definition of φ from $[\alpha, 1]$ to the intervals $[2 \alpha-1, \alpha], \ldots,[n \alpha-(n-$ $1),(n-1) \alpha-(n-2)]$. It can be seen that for any $k=1, \ldots, n$ we have

$$
\varphi(k \alpha-(k-1))=k \varphi(\alpha)-(k-1)
$$

To have a meaningful extension, the following inequalities must hold:

$$
\frac{n-1}{n} \leq \varphi(\alpha) \leq \frac{n}{n+1}
$$

and

$$
\frac{n-1}{n} \leq \alpha \leq \frac{n}{n+1}
$$

Then we can define φ for $x \in[k \alpha-(k-1),(k-1) \alpha-(k-2)]$ as follows $(k=1, \ldots, n)$:

$$
\begin{equation*}
\varphi(x)=\gamma \cdot \psi_{0}\left(\frac{x+(k-1)-k \alpha}{1-\alpha}\right)+1-k \gamma \tag{24}
\end{equation*}
$$

where γ depends on ψ_{0} and α as follows:

$$
\gamma=\frac{1}{n+1-\psi_{0}\left(\frac{n-(n+1) \alpha}{1-\alpha}\right)}
$$

This choice of γ guarantees that the definition of φ on $[n \alpha-(n-1), 1]$ is appropriate. This makes it possible that φ can be defined in a meaningful way also on the missing part $[0, n \alpha-(n-1)]$ by equation (19).

All the details of handling this case can be found in [5].

5 Summary and Conclusions

In this paper we have completely described continuous t-norms that are migrative with respect to a fixed t-norm from the prototypes. Their characterization has been developed through solutions of a functional equation.

Although Definition 1 is seemingly general, notice that it does not provide a meaningful notion for triangular conorms. Indeed, if S is a t-conorm then it is α migrative if and only if $S(\alpha x, y)=S(x, \alpha y)$ holds for all $x, y \in[0,1]$. If we choose $y=0$ then we must have $\alpha x=x$ for all $x \in[0,1]$, because S is α-migrative. This is impossible when $\alpha \neq 1$. Similarly, if $y=1$ then we must have $S(x, \alpha)=1$ for all $x \in[0,1]$, which is again impossible unless $\alpha=1$. Therefore, even the correct definition of α-migrative t -conorms needs special care.

References

1. J. Aczél, V. D. Belousov and M. Hosszú, Generalized associativity and bisymmetry on quasigroups, Acta Math. Sci. Hung. 11 (1960) 127-136.
2. M. Budinčević and M.S. Kurilić, A family of strict and discontinuous triangular norms, Fuzzy Sets and Systems 95 (1998) 381-384.
3. F. Durante and P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets and Systems 159 (2008) 77-80.
4. J. Fodor and I.J. Rudas, On continuous triangular norms that are migrative, Fuzzy Sets and Systems 158 (2007) 1692-1697.
5. J. Fodor and I.J. Rudas, On generalizations of the migrativity property for t-norms (2008, forthcoming).
6. E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Trends in Logic. Studia Logica Library, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
7. Gy. Maksa, Quasisums and generalized associativity, Aequationes Math. 69 (2005) 6-27.
8. R. Mesiar and V. Novák, Open problems from the 2nd International Conference on Fuzzy Sets Theory and Its Applications, Fuzzy Sets and Systems 81 (1996) 185-190.
