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Abstract: Nowadays, when visual modeling is becoming more and more popular, it is still 
an open issue how to model the runtime behavior (animation) of visual languages. We are 
currently working on a complete solution to this issue, we have specified visual languages 
that can describe the behavior of arbitrary metamodeled visual language and we have also 
provided a graph-rewriting-based transformation which processes these 'animation' models 
and generates executable source code. This paper shortly introduces previous work, and 
focuses on the analysis of the runtime properties of the transformation. We performed 
termination analysis on the transformation, and examined the runtime requirements of the 
algorithm, based on the size of the input models. We have also verified that the 
transformation processes topologically correct models only. We present generic techniques 
which are applicable not only in connection with this concrete case, but with arbitrary 
other graph-rewriting based model transformations. 
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1 Introduction 
In recent years, domain-Specific Modeling (DSM) has gained increased popularity 
in software modeling. Domain-Specific Modeling Languages (DSMLs) can 
simplify the design and the implementation of systems in various domains. 
Domain-specific visualization helps to understand the models for domain 
specialists not familiar with programming. A popular way to define DSMLs is 
metamodeling. Metamodels define a vocabulary of model elements for a specific 
language by describing the available model elements, their properties and the 
relations between the elements. This definition is often referred to as the abstract 
syntax of the language. However, metamodeling is not meant to describe the 
visual representation, namely the concrete syntax, or the dynamic behavior 
(animation) of modeling items. Based on the metamodel, a default concrete syntax 
can be generated automatically, but the description of customized visualization – 
including colors, sizes and layouting - usually needs additional modeling 
techniques. 
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In [1], we have presented an integrated solution to describe the dynamic behavior 
of the models in a generic and visual way. In our approach, we separate the model 
and its animation logic, and provide visual languages to define the animation of 
the model elements or their visualization. The integration of the models is 
performed by both references between models of different domains and by the 
model processors. The integration of external components or frameworks into our 
environment is supported by a visual language and a code generator, thus the 
animation logic can handle all components in a uniform way. 

To be able to execute the visual behavior models with high performance - instead 
of the runtime interpretation of the models - we generate executable source code 
from them and compile the source code into reusable dynamic linked libraries. We 
perform the code generation with graph rewriting-based [2] model transformation. 
The transformation itself is published in depth in [3]. This paper presents the 
animation framework and the transformation in a nutshell and evaluates important 
properties of the transformation in detail. The presented analysis techniques are 
not specific to this specific case, but are generally applicable in connection with 
any other transformations as well. 

2 Background 
Visual Modeling and Transformation System (VMTS) [4] is a general purpose 
metamodeling environment supporting n-level metamodeling. N-level means in 
this context that the instance models can be used as metamodels: they can be used 
to define model hierarchies such as meta class diagram - class diagram - object 
diagram. The maximum depth of these hierarchies is not limited; in VMTS, we 
can construct an n-level modeling chain. VMTS uses a proprietary modeling 
space. Models in VMTS are represented as directed, attributed graphs. In our 
approach, edges are attributed as well. 

2.1 VMTS Animation Framework (VAF) 
The VMTS Animation Framework (VAF) [1] is a flexible framework supporting 
the real-time animation of models both in their visualized and modeled properties. 
VAF separates the animation of the visualization from the dynamic behavior 
(animation) of the model. For instance, the dynamic behavior of a graphically 
simulated statechart is really different from that of a simulated continuous control 
system model. In our approach, the domain knowledge can be considered as a 
black-box whose integration is supported with visual modeling techniques. Using 
this approach, we can integrate various simulation frameworks or self-written 
components with event-driven communication. The animation framework 
provides three visual languages to describe the dynamic behavior of a 
metamodeled model and their processing via an event-driven concept. The key 
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elements in our approach are the events. Events are parameterizable messages that 
connect the components in our environment. The services of the presentation 
framework, the domain-specific extensions, and possible external simulation 
engines are wrapped with event handlers, which provide an event-based interface. 
Communication with event handlers can be established using events. The 
definition of event handlers is supported by a visual language. The visual language 
defines the event handler and the possible events. The default implementation of 
an event handler can be generated based on the interface of the wrapped objects 
[5]. The animation logic can be described using an event-driven hierarchical state 
machine, called Animator. We have designed another visual language to define 
these state machines. The state machine consumes and produces events. The 
transitions of the state machine are guarded by conditions testing the input events 
and fire other events after performing the transition. The input (output) events of 
the state machine are created in (sent to) another state machine or an event 
handler. The events produced by the event handlers and the state machines are 
scheduled and processed by a DEVS [6] based simulator engine. The event 
handlers and the state machines can be connected in a high-level model. The 
communication between components is established through ports. Ports can be 
considered labeled buffers. Note that both the high- and low-level languages are 
defined by the same metamodel, however, based on their application they can be 
considered as two different languages. 

2.2 Processing Visual Behavior Models 
The behaviour models are transformed into executable source code, more 
precisely, into the model of the code, then the source code is compiled and 
executed using a DEVS-based simulation framework. We employ a C# DOM 
similar to the Microsoft CodeDOM [7] to model source code. The control flow 
model of the transformation which processes the animation models is depicted in 
Figure 1. The sequence can be departed into three well-separated parts. Part (1) 
verifies the input models, if they are topologically correct (detailed in Section 2). 

 
Figure 1 

Transformation control flow model 
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The transformation processes those models only, the states of that are reachable 
from the start state. Part (2) creates the individual animation classes for each 
Animator element and their contained state machine, while part (3) creates the 
configuration class, which ties animators and event handlers together. 

3 Input Model Verification 
We have extended the original transformation presented in [3] with three 
additional rules (Figure 1, Figure 2) used to verify the input models as a first step. 
The transformation verifies the reachability of the state machine states. Actually, 
we do not verify the validity of the required event sequences to reach a state, but 
only the topological structure of the input model is analyzed. If a specific state is 
topologically unreachable, it indicates a design flaw. This is not a domain-specific 
problem, but applies to each simulation. 

Proposition 1 The transformation processes topologically correct state machines 
only (in sense of each state of the input model should be reachable from the start 
node). 

Proof: 
Figure 2 depicts the rules which are used to detect unreachable states in the input 
models. The GenerateTC (Generate Transitive Closure) rule matches either a 
StartState or an already processed (indicated by a flag on the element) element for 
the stateFrom node. It also selects a still not processed edge for the Transition 
edge and a not processed node for the stateTo node. After a successful match, it 
sets the Processed flag of the transition edge and the stateTo node to true. The 
rule is executed exhaustively, thus, when it finishes, there is not a state (stateTo) 
in the input model, that has a processed neighbor with incoming edge. This is 
possible, if (i) each state is in processed state (meaning, that each state is 
reachable), or (ii) there is not an incoming edge from the processed (reachable) 
states into any of the unprocessed ones. The unprocessed states are not reachable 
from the start node, so if the CheckDeadState rule can mach such a node, then the 
input model is invalid, and the transformation exists. Otherwise each state is 
reachable from the start, and the transformation proceeds. □ 
Finally the ResetTransitionTag rule matches each transition, and resets the 
Processed flag of the transition and the two connected States to false for later use. 

             
                a) GenerateTC                   b) CheckDeadState              c) ResetTransitionTag 

Figure 2 
Rules detecting unreachable states 
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4 Termination Analysis 
We use the definitions and theorems presented in [8] to make the proving method 
simpler. These theorems are proven to injective matches only, but this is not a 
problem, because the presented transformation uses injective matches only. 

Definition 1 An E-concurrent production p* is an E-based composition if there is 
at least one input graph with an E-related transformation . 

Definition 2 Consider a possibly infinite sequence of graph productions pi , 
(i=1,2,…) and a sequence of E-dependency relations (Ei, , ei+1) leading to a 
sequence of their E-based compositions (  with  and 

 

A cumulative LHS series of this sequence is the graph series  consisting of the 
left hand side graphs of . Moreover, a cumulative size of series of a production 
sequence is the nonnegative integer series . 

Theorem 1 A GTS=(P) terminates if for all infinite cumulative LHS sequences 

( ) of the graph productions created from the members of P, it holds that 

 
Note that we assume finite input graphs and injective matches. 

Proposition: The transformation depicted in Figure 1 terminates on arbitrary 
finite input model. 

Proof: Except for the ProcessTransitions and the PopEvents rule-pair, there are 
no loops in the cycle, after finishing the execution of a rule there is not a control 
sequence which would contain the same rule again. Therefore, we can examine the 
termination of the remaining rules separately. 

As the CO_Skeleton and CheckDeadState rules are executed only once, they do 
not influence the termination of the transformation. 

The key of the proving method is to show, that the merging of the consecutive rule 
executions results in an LHS sequence that exceeds all limits. In case of the 
GenerateSkeleton rule, the processing of an Animator is denoted by creating an 
attribute reference between the Animator (animator node) and the newly created 
namespace declaration (ns node). The existence of such a reference and the 
connecting namespace is assigned as a negative application condition to this rule. 
As the GenerateSkeleton rule does not create or delete another attribute reference 
or nodes of type Namespace, the merging of two consecutive executions of this 
rule results in an LHS graph, that contains two different Animator nodes (the 
negative application condition denies to match the same Animator twice) (Fig. 3a). 
By the combination of each additional rule execution, the LHS graph will grow by 
another Animator node. Therefore, (based on Theorem 1), the rule terminates, and 
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a Namespace node is created for each and every Animator node. The termination 
analysis of the GenerateTC, ResetTransitionTag, Method_Buildup and 
Method_PopEvents rules follows the same principle. 

The termination of the GenerateClass rule can be proven on a similar basis. In this 
case the processing of a Namespace node is denoted by setting the IsProcessed 
flag to true on the node. The existence of this flag is assigned again to the rule as a 
negative application condition. Figure 3 b) depicts the combination of two 
consecutive GenerateClass rule executions. The same Namespace cannot be 
matched twice by two different executions of the same rule, thus, the LHS graph 
will grow by a Namespace and an Animator node (a unique Namespace node is 
created and assigned to each Animator node). Consequently the GenerateClass 
rule terminates as well. The termination analysis of the Traverse, PropertyPorts, 
TopLevelStates, SubLevelStates, CO_InitAnim, InitEH and EventRoutes rules 
follows the same principle. 

Recall that, the ProcessTransitions and the exhaustive PopEvents rules are 
executed in a cycle. The termination of the PopEvents exhaustive rule can be 
proved using the presented methods independently from the processed transition; 
therefore, we have to prove only that the ProcessTransition rule can be executed 
for a finite number of times. As the ProcessTransitions rule does not match any 
elements created or modified by PopEvents, it can be examined as if it would be 
executed in the loop alone. This way we simplify the execution to the exhaustive 
way, where the termination is ensured by the application of an IsProcessed flag 
again. □ 

IsProcessed == false

IsProcessed = true

IsProcessed = true IsProcessed == false IsProcessed = true

IsProcessed = true

IsProcessed == false

IsProcessed == false  
a) Merging of rules with exclusive attribute constraints 

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

 
b) Merging of rules with exclusive reference constraints 

Figure 3 
E-concurrent production of consecutive executions of the same rule 
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4 Complexity Analysis of the Transformation 
In this section, we analyze the algorithmic complexity of the transformation. As 
the rewriting phase of a rule requires constant time, we examine only the time 
required by the matching phase of the rules. 

The transformation engine generates an execution plan [9] for each rule based on 
the LHS patterns. The execution plan defines exactly how the matcher traverse the 
host graph and in which order it matches the elements of the LHS graph. The 
matching order highly influences the complexity of the matcher. In this chapter, 
we perform complexity analysis based on the generated execution plan. 

Definition 1 Let nT mean the number of nodes of type T found in the input model. 

Definition 2 Let eT mean the number of edges of type T found in the input model. 

Definition 3 Let  mean the maximum number of incoming edges of type E in 
node of type T 

Definition 4 Let  mean the maximum number of outgoing edges of type E in 
node of type T 

Note: It is evident, that  and  

In Figure 4, we present the notation, that describes the execution plan of a rule in a 

visual way. Figure 4 a) illustrates the case when the matching starts at the edge e, 
the nodes a and b are matched, then the edge f and finally the node c. As an edge 
exactly defines its endpoints, their matching cost can be considered constant. The 

matching of the two edges can be performed in . (In the worst case, 
we have to check every E-typed e edges, and every f edges outgoing from every 
possible b.) Figure 4b) illustrates the case, when the matching starts at the node a, 
then continues through e to b, then through f to c. The complexity of this 
execution plan is O(nA*nE*nF). 

In the following we analyze each rewriting rule of the transformation, and 
evaluate their complexity separately and then aggregate the results. 

B
Fout

 

B
FoutA

Eout

 
a) matching starts at an edge                     b) the matching starts at a node 

Figure 4 
Execution plans 
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GenerateSkeleton: 

The rule matches animator nodes in an exhaustive way. The matching of a single 
Animator node can be performed in O(nAnimator) time. The rule is executed once for 
each Animator, since new Animators are not created, the execution of the rule 
requires O(nAnimator

2) time. Ideally, iterating through a set of nodes can be 
performed in O(n). However, the applied transformation engine does not support 
the execution of a rule for each elements of a type, we can achieve the same 
functionality by executing the rule in the exhaustive way and marking already 
processed elements. 

GenerateClass: 

The rule matches an Animator and a Namespace node in an exhaustive way. The 
rule also prescribes an attribute reference from the Animator node towards the 
Namespace. As this reference is not part of the metamodel (it is used only during 
the transformation), we cannot navigate along it, and the existence of it can be 
verified only after matching the two nodes. Therefore, one matching can be 
performed in O(nAnimator*nNamespace) time (Figure 5). The rule is executed once for 
each Animator, and as nAnimator=nNamespace (one Namespace is created for each 
Animator, and there are no Namespaces in the output model by default), the total 
execution time is O(nAnimator

3). 

 
Figure 5 

Execution plan for GenerateClass 

PropertyPorts 

Figure 6 illustrates the execution plan for the PropertyPorts rule. 

Note, that there is exactly one g edge of type TypeMemberContainment incoming 
into method_init, thus it (and class_anim) can be matched in constant time. One 
match can be found in O(nAnimatorPortContainment*nStatementCollectionContainer), the rule is 
executed once for each AnimatorPort. As nAnimatorPort=nAnimatorPortContainment and 
nStatementCollectionContainer=nAnimator (three methods, three StatementCollection-
Containers are created for each animator, and the output model did not contain 
such an element by default) the complexity of the rule is O(nAnimatorPort

2*nAnimator). 

 
Figure 6 

Execution plan for PropertyPorts 
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MethodBuildup 

Figure 7 illustrates the execution plan of MethodBuildup. Similarly to the case of 
GenerateClass, the connection between the two nodes can be discovered only 
after matching both of them, thus the execution time is O(nAnimator*nTypeDeclaration), 
this simplifies to O(nAnimator

2) as nAnimator=nTypeDeclaration. 

 
Figure 7 

Execution plan for MethodBuildup 

TopLevelStates, SubLevelStates, ProcessTransitions 

 
The matched patters of the TopLevelStates, SubLevelStates and 
ProcessTransitions rules (Figure 8) are similar to that of the PropertyPorts rule. 
However, because of the different element types, the execution order has been 
slightly changed. 

One match can be found in O(nAnimatorsStateContainment*nStatementCollectionContainer) time in 
the top-level case, O(nStateStateContainment*nStatementCollectionContainer) in the sub-level case 
and O(nTransition*nStatementCollectionContainer) in case of the ProcessTarnsitions rule. The 
TopLevelStates and SubLevelStates rules are executed once for each top-level state 
(nAnimatorStateContainment) respectively once for each sub-level state (nStateStateContainment) 
(ProcessTransitions is executed once). As O(nStatementCollectionContainer)=O(nAnimator), 

a)     

b)        

c)     
Figure 8 

Execution plans for a) TopLevelStates b) SubLevelStates and c) ProcessTransitions 
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the aggregated execution times are O(nAnimatorStateContainment
2*nAnimator), 

O(nStateStateContainment
2*nAnimator) and O(nTransition*nAnimator).  

PopEvents 

The PopEvents rule (Figure 9) receives the transition and the class_anim element 
as a parameter, thus they can be matched in O(1). 

 
Figure 9 

Execution plan of the PopEvents rule 

The rule is executed once for each AnimatorPortContianment (Port), the overall 
execution time is thus O(nAnimatorPortContainment

2*nStatementCollection). 

The loop consisting of ProcessTransitions and PopEvents is executed for each 
transition, the execution time of the complete loop is 
O(nTransition

2*nAnimator
2*nAnimatorPort

2) (nStatementCollectionContainer = nStatementCollection and 
nAnimatorPortContainment=nAnimatorPort and nStatementCollection=nAnimator). 

CO_Skeleton 

The rule does not match a node, but creates new elements only. It is executed 
once, thus it requires O(1) time. 

CO_InitAnim, CO_InitEH 

 
                              a) CO_InitAnim                                                   b) CO_InitEH 
 

Figure 10 
Execution plans for CO_InitAnim and CO_InitEH 

The two rules receive the class_config and the init_statements elements as 
parameters from the CO_Skeleton rule, thus, their matching can be performed in 
O(1) (Figure 10). The remaining nodes can be matched in O(nAnimator) and 
O(nEventHandler). They are executed once for each Animator respectively for each 
EventHandler, thus the aggregated execution times are O(nAnimator

2) and 
O(nEventHandler

2). 



Magyar Kutatók 10. Nemzetközi Szimpóziuma 
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics 

 375 

CO_EventRoutes 

The initStatements node is passed as a parameter to the CO_EventRoutes rule, 
therefore, it has a constant match time. The container edges and nodes for port1 
and port2 can also be matched in constant time, as there exists exactly one 
container (either Animator or EventHandler for each port). Thus, the complexity 
of the rule is O(nEventRoute). 

 
Figure 11 

Execution plan for CO_EventRoutes 

GenerateTC, ResetTransition 

The execution plan of the GenerateTC and ResetTransition rules is depicted in 
Figure 12. Both rules are executed once for each transition, thus their execution 
time is O(nTransition

2). 

 
Figure 12 

Execution plan for the GenerateTC and ResetTransition rules 

CheckDeadState 

The rule tries to match a single State (which was not processed by GenerateTC), 
and is executed once, therefore it finishes in O(nAnimState). 

Aggregated complexity of the transformation 

To be able to summarize the runtime requirements, we have to note that  
nAnimatorPort ≥ nAnimator (each animator contains at least one port to be able to 
communicate with the environment). Furthermore,  
O(nTransition) ≥ O(nAnimatorStateContainment) and O(nTransition) ≥O(nStateStateContainment), 
because nTransition ≥ ½ nAnimState (an input state machine consist of connected graph 
components nested hierarchically and each component contains at least one 
transition, thus in each component nTransition ≥ ½ nAnimState, which is the case of two 
states and one transition). So the runtime requirements with the highest exponents 
are: O(nTransition

2*nAnimator
2*nAnimatorPort

2), O(nEventHandler
2) and O(nEventRoute). In a 

typical case, the state machine is much larger, than the high level connecting 
model with the Animators and EventHandlers, therefore, the most significant 
component is the only loop in the control flow graph with the complexity of 
O(nTransition

2*nAnimator
2*nAnimatorPort

2). 
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Conclusions 

In [3] we have presented the model transformation which converts visual behavior 
models to source code. In this paper we have analyzed the runtime properties of 
the transformation. We have shown that the transformation processes only those 
models the states of which are topologically reachable. We have proven that the 
transformation terminates regardless of the input model. We have also evaluated 
the runtime complexity of the transformation. We have shown, that the 
transformation can be executed in O(nTransition

2*nAnimator
2*nAnimatorPort

2). Although, 
the presented results are specific to this concrete transformation, the applied 
techniques can be used at the analysis of other graph-rewriting based 
transformations as well. 
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