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Abstract: Verification of models and model processing programs are fundamental issues 
and are inevitable in model-based software development in order to apply them in real-
world solutions. Verification concerns the analysis of non-functional and functional 
properties as well. Model transformation developers are interested in offline methods for 
the verification process. Offline analysis means that only the definition of the model 
transformation and the metmodels of the source and target languages are used to analyze 
the properties and no concrete input models are taken into account. Therefore, the results 
of the analysis hold for each output model not just particular ones, and we have to perform 
the analysis only once. Most often, formal verification of model transformations is 
performed manually, but automated or semi-automated approaches have gained focus 
recently. We have previously presented a method to formally describe the main 
characteristics of model transformations. Our concept consists of two steps: (i) The 
automatic generation of a formal description from a concrete transformation, which is 
manually extended by formal assertions by transformation experts. (ii) A reasoning system 
is used to automatically derive the proof of certain properties from the previous formal 
description. In this paper, we show how deduction rules of the reasoning system can be 
defined. 

1 Introduction 
In model-based approaches, models are primary artifacts. Verification of models 
means proving some properties of the models, which is a fundamental issue in 
industrial solutions. We usually need to convert different models to others, for 
example when generating source code from a UML [1] class diagram. Model 
transformation is an often used model processing technique for this purpose [2]. 
Verification of model transformations means proving some properties of the 
model transformations [3], functional and non-functional properties, and some 
properties of the generated models as well. If model transformations are verified 
completely, the generated models do not need to be analyzed separately after each 
application of the transformation. The analysis of a transformation is called 
offline, when only the definition of the transformation and the language of the 
input and output models are used during the analysis process and no concrete 
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input models are taken into account. Therefore, all results are independent from 
the input models and the analysis has to be performed only once for the 
transformation. In this case, it is not critical if manual work is needed. 

2 Background 

2.1 Formal Background of Model Transformations 
Graph rewriting-based model transformations offer a strong mathematical 
background for the formalization and analysis of model transformations [5, 6]. 
Graph transformations are used as a modeling technique in software engineering 
and to process visual models created in various modeling languages such as 
DSMLs and the Unified Modeling Language. We do not want to formally cite all 
definitions of graph rewriting systems, we refer only to the main definitions 
informally. 

Graph transformations consists of separate graph rewriting rules, each rule is 
defined with its left-hand-side graph (LHS) and right-hand-side graph (RHS). A 
transformation is the application of a sequence of rules on an input graph, where 
the application of a rule means finding an isomorphic occurrence of LHS in the 
input model and replacing it with RHS (Double Pushout (DPO) approach). An 
application of a rule is successful if a match has been found. 

In model transformation frameworks, transformations consists of separate rules 
and an additional control structure (control flow) that defines the execution order 
of the rules. Models can be considered special graphs, for these applications, 
attributed typed graphs have been introduced. A model transformation typically 
has one input and one output model, but may process multiple models as well. In-
place transformations are performed on a single model. For the better 
understandability, in this paper, we consider in-place transformations, which does 
not restrict the capabilities of the approach to be presented. 

Metamodels are special models the instances of which are instance models. A 
meatmodel defines the type of entities and the relations between them that can 
appear in the instance models. In metamodeling frameworks, we can usually 
define additional restrictions (constraints) in the metamodels that have to be 
satisfied on the instances. 

2.2 Introduction to the Concept of Formal Description of 
Transformations 

Completely general methods for verification of all properties are unreachable, 
since, for example, the termination of a model transformation in general is an 
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algorithmically undecidable problem [7]. Our goal is to develop an automated or 
semi-automated reasoning system that can prove some properties of 
transformations in an offline way. Previously [8], we have introduced the term 
assertion: an assertion is a formal expression that describes some characteristics of 
a model under transformation or a model transformation. In other words, an 
assertion states something about the model or the model transformation. We want 
the system to prove if these assertions are true or prove if they are false. We have 
proposes the formal definition language for describing the assertions. We can 
define deduction rules for the reasoning system. Using an initial assertion set that 
describe a model transformation and applying the deduction rules, the reasoning 
system may derive some more assertions. 

We expect our system to be able to handle many types of assertions, and it should 
be extendable with new ones in the future. In other words, we do not want to make 
restrictions on the types of the analyzed properties. We want our system to be able 
to investigate functional and non-functional properties as well. The set of 
deduction rules should be extendable as well. The expressiveness of the first-order 
logic extended by handling of attributes and topological queries is satisfying for 
this purpose. To make this paper mor understandable and self contained, in the 
following, we summarize the formal description presented in [8] for describing 
model transformations. 

Formal Transformation Descriptions 

Definition 1. A transformation description  of a 
transformation T consists of 

• A control graph , where  is a set of 

nodes called steps; is a set of edges called flow 

labels  is the source function for edges; 

and  is a target function for edges. 

• An action function  

• A starting step , such that  

• A set  of assertions that are sentences of the Assertion Description 
Language. 

A control structure describes the control graph of a model transformation. The 
separate building elements of the transformations are called steps, because we 
want to distinguish between traditional rewriting rules and the elements of 
transformation descriptions. A step can be a traditional rewriting rule, and a 
complex sub-transformation as well. The application of a rewriting rule can be 
successful, or unsuccessful, and based on this fact, branches can be defined in the 
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control flow. We decided to keep this feature and extend it for steps as well. 
Therefore, to each flow edge an action value is assigned: (i) Value success means 
that the flow edge is followed if the application of the source step was successful. 
(ii) Value failure means that the flow edge is followed if the application of the 
source step was unsuccessful. (iii) Value dontcare means that the edge is followed 
in both cases. 

Assertions are sentences of the Assertion Description Language (ADL). An 
assertion consists of two parts: (i) a formula that states something about the model 
or the transformation, and (ii) a part that places the formula at a concrete point of 
the transformation control structure. For example: there are no nodes of type T in 
the input model (i) when the transformation starts (ii). We can distinguish two types 
of formulas: (i) static formulas and (ii) dynamic formulas. While formulas of type 
(i) (for example the first part of the previous assertion) states something about the 
current state of the model under transformation or the transformation itself, 
formulas of type (ii) describe the dynamic behavior of a transformation step. An 
example for formulas of type (ii) can be: step s deletes all nodes of type T1. The 
sentences of ADL are called assertions. The syntax of an assertion assertionT of a 
model transformation T is as follows: 

 

Bold words are operators in ADL, s ג ST is a step of the corresponding model 

transformation. The prefix of an assertion describes the point of the transformation 
where the current Formula is true. The second part of each assertion is a formula, 
which can be either static or dynamic. The semantics of possible prefix values is 
summarized in Table 1. 

Table 1 
Assertion Prefixes 
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Patterns in ADL 

Before introducing assertion formulas, we need to present the definition of 
patterns. Patterns will be used throughout the definition of different formulas in 
assertions. 

Definition 2. A model pattern  consists of: 

• A typed graph TG=(N, E, T, type, source, target), which is a G=(N, E, 
source, target) graph extended with a set T of types and a type function 

 that assigns a type value for each node or edge in the 
graph. 

• A set of attribute constraints AC. 

Attribute constraints are sentences of the Attribute Constraint Description 
Language (CDL). Each sentence states some constraints about the attributes of the 
nodes and edges in the pattern. In this paper, we will use only simple attribute 
constraints. A simple attribute constraint defines that the value of an attribute must 
be a certain value, or defines that the value of an attribute must not be a certain 
value. The syntax of the sentences of CDL is as follows: 

 
if P is the corresponding pattern, 

•  is the name of the constraint 

• e is a node or an edge of the corresponding pattern  
• a is the name of the attribute 
• exactly one of operators requires or forbids has to be present 
• value is an arbitrary value of an attribute 

Patterns are not attributed graphs, since nodes and edges of the pattern does not 
have attributes. The attribute constraints will be evaluated when an instance of the 
pattern is found in a concrete model. 

Definition 3. Let I be a model, which is a typed attributed graph. I is an instance 

of a pattern P (denoted by ) if there exists an injective graph morphism m 
between the base graph of I (I without types and attributes) and the base graph of 
TG (without types) such that: 

• or  inherits from 

 by the metamodel of the models to be transformed 

• , or  inherits from 

 by the metamodel of the models to be transformed 
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•  l all attribute constraints in P that concerns m(l) are 
satisfied for l. 

The metamodel of the models to be transformed is also used for the analysis. 
Therefore, in the case of instance matching, inheritance is taken into account. 

The semantic of a constraint  
is as follows: if I is an instance of pattern P with the morphism m, then 

• the attribute a of element l' of I (m(l') = l) has to have the value v in the 
case of requires operator is present,  

• the attribute a of element l' of I (m(l') = l) is forbidden to have the value v 
in the case of forbids operator. 

We introduce a notation that will be used later in this paper: if I is an instance of 

pattern P with morphism m and , or  than n(I) = n' and e(I) = e' such 
that m(n') = n and m(e') = e. 

Formulas of ADL 

Table 2 
Static Formulas in ADL 

 
Table 3 

Dynamic Formulas in ADL 

 

The last elements of ADL are formulas, in Table 2, and Table 3, we have collected 
the syntaxes and semantics of static and dynamic formulas respectively. A None 
formula states that a pattern does not exist in the model at the current point of the 
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transformation specified by the prefix of the assertion. Its opposite is the An Exists 
formula which states that at least one instance of a concrete pattern exists in the 
model. An any formula is used describe some structural constraints of the model, 
for example, if a node of type T1 is present in the model, than it has at least one 
connecting node (connected with an edge) of type T2. The base dynamic formula 
that is used is called Forone formula. It can be identified with the definition of a 
rule by specifying its left hand side and right hand side patterns. We have 
introduced a formula (Foreach) for the exhaustive application of a Forone 
formula, which means that the modification is applied repeatedly until it cannot be 
applied any more. We can explicitly define that a step terminates with the 
Termination formula. 

2.3 Summary 
In this section, we have concluded a formal description language for model 
transformations. Given an initial assertion set, using the appropriate deduction 
rules, we can derive additional assertions that describe additional properties of the 
model transformation. A key question of our approach is how to create the initial 
assertion set. We want to provide an automated or semi-automated system, which 
means that a base transformation description with a base assertion set that 
describes the main characteristics of the transformation should be generated 
automatically from the definition of a transformation. Semi-automation means that 
transformation experts should have the possibility to add new assertions to the 
original assertion set, in order to extend the knowledge of the system with the 
results of the manual analysis. 

3 Related Work 
Offline analysis of model transformations have been performed in several cases, 
but the approaches presented can usually be applied for only certain (type of) 
transformations, or only for certain (type of) properties. In [9], syntactic 
correctness and semantic correctness are aimed to be verified by the VIATRA 
transformation system. Semantic correctness covers: (i) verification of correctness 
requirements, (ii) termination, (iii) completeness, (iv) uniqueness. The paper 
presents a static method to verify model transformations. Converting system 
models into Kripke structures allows to verify certain properties of a single 
transformation starting from a single model. [10] presents how behavior 
preservation of a model transformation can be verified via goal-directed 
certification. The proposed verification realized in GReAT is a static technique, 
which is based on the generation of assurances for code produced by automatic 
synthesis tools. [11] presents an approach to verify that during the transformation 
of a model the semantic preserves, which is formally proved for each rule. Some 
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papers propose approaches for verification of model transformations in special 
domains, such as mechatronic systems [12], or Java code generation [13]. [14] 
presents an approach similar to the one presented in this paper: UML metamodels 
along with embedded well-formedness rules (typically OCL constraints) can be 
translated to the formalism Alloy. Then, the Alloy Analyzer can conduct fully 
automated analysis of the transformation. The difference between our approach 
and the one presented in that paper is that the Alloy Analyzer uses a simulation 
that generates a random instance model of the input metamodel, then analyzes the 
behavior of the transformation by transforming this instance model. 

4 Contributions 

4.1 Consistency of Transformation Descriptions 
Until now, we have concluded the formalism to describe model transformations. 
The base elements of a transformation description are the control graph and the set 
of assertions, these entities will be used to derive additional assertions. 

When formally analyzing transformation descriptions, it is important to prove that 
a description is consistent in the sense that there are no assertions that contradict 
each other. It is a fundamental issue, because we want the developer to manually 
extend the set of assertions. Another important question is: what can be stated 
about the consistency of a description that is extended with the derived assertions? 
It is not a trivial problem, since only a subset of assertions are used when deriving 
new assertions. 

Definition 4. Let D=(C, start, action, A) be a transformation description. An 

assertion a is derivable from the transformation description (denoted by Dٟa), if 

all assertions in A are true implies that a is true. 

Definition 5. Let a = (prefix1 Formula1), and a2=(prefix1 Formula2) be two 
assertions. a1 is the opposite of a2 if a1 is true (false) if and only if a2 is false 
(true). 

Definition 6. A transformation description D=(C, start, action, A) is weakly 

consistent if ׍a1, a2 ג A such that a1 is the opposite of a2. 
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Definition 7. A transformation description D=(C, start, action, A) is strongly 

consistent (or consistent) if weakly consistent and ׊a, A' : D'=(C, start, action, A') 

ٟa, A'كA ֜D''=(C, start, action, Aڂ{a}) is consistent. 

The analysis of the property consistency is crucial in the application of our 
concept, but may exceed the limits of this paper. In the rest of this paper, we 
assume that our transformation descriptions are consistent. 

4.2 Deduction Rules for the Reasoning System 
In this section, we present deduction rules for the automated reasoning system. 
With these rules, a reasoning system can derive additional assertions from an 
initial assertion set that describes the base characteristics of a concrete 
transformation. Deduction rules are needed to (i) propagate formulas through the 
control flow, (ii) derive new formulas at certain points of the transformation. 
Propagation is, for example, when we prove that if a formula is true before a 
concrete rule, it will be so after the rule as well. Derivation means proving a 
formula that could not be proven before a concrete point of a transformation. 

Proposition 1. Let D be a consistent transformation description. In D, if (after(s) 

Formula)גA, and ׌ e ג F : source(e) = s, target(e) = s', and ׍  e' ג F: e' ≠ e 

target(e') = s', then D ٟ (before(s') Formula). 

Intuitively, Proposition 1 claims that if there is a flow edge from step s to step s', 
and there is no other edge to s' then each formula that will be true after the 
application of s will be true as well before the application of s'. 

Proof (of Proposition 1). There are no assertions on flow edges (which means, 
flow edges do not modify the properties of the model or model transformation), 
therefore, in a concrete application of a transformation if a formula is true after the 
execution of a step (s) it will be true as well before the application of the next step 
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(s'). The conditions above assures that in each execution of the transformation, 
independently from the concrete model, the step before s' will always be s, 
therefore, if a formula is true after s it will be always true before s'. 

Proposition 2. Let D be a consistent transformation description. In D, if (pre(s) 

Exists P) ג A, and (atsucc(s) ForEach P ՜ P' ג A, and ׍ a ג A : a= (atfail(s) 

Formula), and (atsucc(s) Terminates) ג A, then D ٟ ሺafter(s) None P). 

Proof (of Proposition 2) The application of the current step surely terminates 
because of the conditions of the proposition. There are two possible cases: (i) the 
application of the step is unsuccessful and (ii) the application of the step is 
successful. 

In case of (i), pre(s) Exists P is not satisfied, therefore, before(s) None P is true. 

The model will not be modified, since ׍ a ג A : a = atfail(s) Formula, therefore, 

None P can be propagated through the step, which results that after(s) None P is 
true. 

In case of (ii), atsucc(s) ForEach P → P' will be true, which means that after the 
step finishes, the rewriting can not be applied anymore, therefore, after(s) Exists 
P will not be true, which means that after(s) None P will be true. 

Proposition 3. Let D be a consistent transformation description. Assume that 

assertion a = (before(s) None P) is true, where s ג S and P is a pattern. None P 

can be propagated through s, in other words, (after(s) None P) will be true, if ׊ a 
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: D ٟ a, a = (atsucc(s) Formula), or a = atfail(s) Formula implies that, if Formula = 

ForEach P1 ֜ ֜ P2, or Formula = ForOne P1 → P2 ֜ ׍ nA, nB: nA ג NP2, or nA 

 .NP such that typeP2(nA) is equal with, or inherits from typeP(nB) ג NP1, and nB ג

Also, ׍ eA, eB: eA ג EP2, or eA ג EP1, and eB ג EP, such that typeP2(eA) is equal 

with, or inherits from typeP(eB) 

Proof (of Proposition 3). The conditions in Proposition 3 claim that there are no 
instances of a pattern P in the model under transformation before the current step, 
and the step does not create, does not delete and does not modify any elements 
that can appear in an instance of pattern P. If an instance of a pattern exists after 
the application of the step, its elements must have been present in the model 
before the application of the rule with the same attribute values, therefore, an 
instance of P would have been present before the application of the step. It would 
be a contradiction, which results that no instances of pattern P is present after the 
application of the step. 

Finally, to demonstrate that functional and non-functional properties can be 
analyzed together using our concept we present a proposition for proving 
termination of a model transformation. 

Proposition 4. Let D be a consistent model transformation description. If there are 

no loops in the control graph C and for each step s ג S, D ٟ (atsucc(s) 

Terminates), and D ٟ (atfail(s) Terminates) then the execution of the 

transformation terminates. 
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Proof of (Proposition 4.) Since there are no loops in the control graph of the 
transformation, it means that each step will be executed at most once. The 
conditions of the proposition states that the execution of each step terminates, 
irrespectively of the fact if the application of the step was successful. Hence, the 
execution consists of finite number of parts, each of these parts terminates, 
therefore, the whole transformation terminates. 

Proposition 5. Let D be a consistent transformation description. Assume that the 

following assertions with static formulas can be derived from the description: D ٟ 

a1 = prefix Any P1 → P2, and D ٟ a2 = prefix None P2. In this case, D ٟ a3 = 

prefix None P. 

Proof (of Proposition 5). prefix selects a concrete point of the transformation, 
where no instance of P2 exists (a2). If an instance of P1 would be present at this 
point, an instance of P2 would also be present, because a1. Therefore, no instances 
of P1 can be present at this point of the transformation. 

4.3 Realization of the Reasoning System 
VMTS is our n-level metamodeling and model transformation framework. For the 
reasoning system, we use SWI-Prolog [15] that is an Prolog environment licensed 
under the Lesser GNU Public License. Deduction rules, including the ones 
presented in Section 4.1, are defined in the Prolog environment. In VMTS, a 
transformation description with basic assertions describing the rewriting rules can 
be generated automatically from the definition of any model transformation: (i) 
Rules of the original transformation will be steps of the generated descriptions. (ii) 
For each rules a ForEach, or ForOne Formula is automatically generated, 
including the appropriate patterns. The generator parses constraints and imperative 
code attached to the rules and use them to generate attribute constraints for the 
patterns. At its current state, VMTS can handle only a very restricted set of types 
of code constructions, such as value assignment and simple conditions, such as if 
an attribute has a specified value. 

Conclusions 

In this paper, we have presented our concept of an automated reasoning system for 
verifying properties of model transformations. We have presented a set of 
deduction rules for the reasoning system and have proven the correctness of the 
derived assertions. Our proposed solution is a new approach that supports offline 
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analysis of model transformations. Even the number of deduction rules defined in 
this paper are small, our system is designed to be as extendable as possible, 
therefore, future development is possible. Our concept supports semi-automated 
verification as well, which means that the knowledge of transformation experts 
and the results of their manual analysis can be built in and used by the reasoning 
system. A realization of the reasoning system in VMTS has been outlined. We 
have shown that an initial assertion set of the system is generated automatically 
from the definition of model transformations. 

Our work can be continued in multiple directions. In order to analyze more and 
more aspects of model transformations and make our concept able to be applied in 
more complex case studies, new types of assertions should be introduced and 
more deduction rules need to be provided. We want to investigate consistency of 
different assertion sets, because manually added assertions may conflict with the 
existing ones. We also want to analyze complex control structures of model 
transformations, such as loops. Hopefully, this approach may result a complex 
system that is able to be applied in industrial solutions as well. 
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