On the Structure of Finite Involutive Uninorm Chains

Sándor Jenei

University of Pécs, Hungary jenei@ttk.pte.hu

Abstract: We will give a state of the art summary on the structural description of involutive uninorm algebras.

Keywords: Substructural logics, Mathematical fuzzy logics, Algebraic semantic, Residuated lattices

1 Results

Involutive uninorm algebras are (not necessarily integral) commutative residuated lattices with an element f which defines an involution. In more detail:

Definition 1 $\mathcal{U} = \langle X, \bullet, \leq, \bot, \top, e, f, \rangle$ is called an *involutive uninorm algebra* if 1. $\mathcal{C} = \langle X, \leq, \bot, \top \rangle$ is a bounded poset, 2. • is a uninorm over \mathcal{C} with neutral element e, 3. for every $x \in X$, $x \to_* f = \max\{z \in X \mid x \bullet z \leq f\}$ exists, and 4. for every $x \in X$, we have $(x \to_* f) \to_* f = x$. It is not difficult to see that every involutive uninorm is residuated (see [10]) and hence • is isotone (see [6]). Therefore, $': X \to X$ given by $x' = x \to_* f$

```
is an order-reversing involution.
```

If \mathcal{C} is linearly ordered, we call \mathcal{U} an involutive uninorm *chain*. \mathcal{U} is called *finite* if X is a finite set.

By using the concept of skew pairs a structural description has been given for the case when e=f and the underlying universe of the involutive uninorm algebra is a complete and densely ordered chain [10]. In this paper we present some results for the finite chain case.

For finite uninorm chains we define a new concept, the rank of the algebra as follows:

S. Jenei On the Structure of Finite Involutive Uninorm Chains

Definition 2 Consider a finite involutive uninorm chain \mathcal{U} and denote the cardinality of its universe by n. Clearly, \mathcal{U} is order-isomorphic to a finite involutive uninorm chain with universe $\{1, 2, \ldots, n\} \subset \mathbf{N}$, denote it by $\langle \{1, 2, \ldots, n\}, \bullet, \leq, 1, n, e, f \rangle$. Call e - f the rank of \mathcal{U} . It is easy to see that the rank is well-defined.

Standing assumption:

Because of the order-isomorphism which was mentioned in Definition 2, without loss of generality, in the sequel we will consider finite involutive uninorm chains *solely* on the universe $\{1, 2, ..., n\}$,² and will employ the shorter notation

$$\mathcal{U}_n = \langle \{1, 2, \dots, n\}, \bullet, \leq, e, f \rangle.^3$$

We have the following structural description.

Definition 3 For any involutive uninorm algebra $\mathcal{U} = \langle X, \bullet, \leq, \perp, \top, e, f, \rangle$ define

$$X^+ = \{x \in X \mid x \ge e\} \qquad \text{and} \qquad X^- = \{x \in X \mid x \le e\}.$$

Proposition 2 Let $\langle X, \bullet, \leq, \perp, \top, e, f, \rangle$ be an involutive uninorm algebra, \otimes its underlying t-norm and \oplus its underlying t-conorm acting on X^+ and X^- , respectively. Then \otimes and \oplus uniquely determine \bullet on $X^+ \times X^-$ via

$$x \bullet y = \begin{cases} (x \to \oplus y')', & \text{if } x \le y' \\ (y \to \otimes x')', & \text{if } x > y' \end{cases}$$
(5)

Corollary 1 If there are no elements in X which are incomparable with e in an involutive uninorm algebra $\langle X, \bullet, \leq, \bot, \top, e, f, \rangle$ then the underlying t-norm and t-conorm of \bullet uniquely determine \bullet .

This structural description motivates the following construction.

Definition 5 Let \otimes be a t-norm on $\{1, 2, \dots, e\}$, \oplus be a t-conorm on $\{e, e+1, \dots, n\}$, and let x' = n + 1 - x for $x \in \{1, 2, \dots, n\}$. Denote $\mathcal{U}_{\otimes}^{\oplus} = \langle \{1, 2, \dots, n\}, \bullet, \leq, e, f \rangle$

where

$$x \bullet y = \begin{cases} x \otimes y & \text{if } x, y \leq e \\ x \oplus y & \text{if } x, y \geq e \\ (x \to_{\oplus} y')' & \text{if } (x \geq e, y \leq e, \text{ and } x \leq y') \text{ or } (y \geq e, x \leq e, \text{ and } x \leq y') \\ (y \to_{\otimes} x')' & \text{if } (x \geq e, y \leq e, \text{ and } x > y') \text{ or } (y \geq e, x \leq e, \text{ and } x > y') \end{cases}$$
(9)

Consider a finite involutive uninorm chain $\mathcal{U}_n = \langle \{1, 2, \dots, n\}, \bullet, \leq, e, f \rangle$ and denote its underlying t-norm (which acts on $\{1, 2, \dots, e\}$) and its underlying t-conorm (which acts on $\{e, e+1, \dots, n\}$) by \otimes and \oplus , respectively. By Corollary 1 we have $\mathcal{U}_n = \mathcal{U}_{\otimes}^{\oplus}$.

Call an involutive uninorm $\top \perp$ -*indecomposable* if [2,n-1] (that is, we remove top and bottom from the underlying universe) is not a subalgebra of it.

The following two theorems hold true.

Theorem 1 We have that \bullet is the monoidal operation of a finite involutive uninorm chain with rank = 0 (resp. rank = 1) iff n is odd (resp. n is even) and

$$x \bullet y = \begin{cases} \min(x, y) & \text{if } x \le y' \\ \max(x, y), & \text{if } x > y' \end{cases}$$
(8)

Magyar Kutatók 10. Nemzetközi Szimpóziuma

10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

Theorem 2 There is a one-to-one correspondence between ⊤⊥-indecomposable involutive uninorms with rank 2 on n-element chains and conorm operations on n-1/2-element chains given as follows: Let ⊙ be the t-norm operation on {1, 2, ..., n+3/2} given by

$$x \odot y = \begin{cases} 1 & \text{if } x, y < \frac{n+3}{2} \\ \min(x, y) & \text{otherwise} \end{cases}$$
(13)

- 1. For any involutive uninorm on $\{1, \ldots, n\}$ with rank = 2, its underlying t-norm is equal to \odot .
- For any conorm operation ⊕ on { n+3/2, n+3/2 +1,...,n }, the monoidal operation of U[⊕]_☉ is an involutive uninorm on {1,...,n} with rank = 2.

Acknowledgement

This work was supported by the EC MC grant 219376, the OMFB-00733/2008 research grant, and the OTKA grant 76811.

References

- G. Birkhoff, Lattice Theory, Amer. Math Soc. Colloquium Publications, third edition (Amer. Math. Soc., RI), 1973.
- J. C. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms, International Journal Of Uncertainty Fuzziness And Knowledge-Based Systems, 5 (1997), 411–427.
- [3] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-Paris (1963).
- [4] D. Gabbay, G. Metcalfe, Fuzzy logics based on [0,1[-continuous uninorms, Archive for Mathematical Logic, 46(6): 425–469, 2007.
- [5] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices An Algebraic Glimpse at Substructural Logics, *Elsevier*, 2007, 532 pp.
- [6] U. Höhle, Commutative residuated l-monoids, in: Topological and Algebraic Structures in Fuzzy Sets, A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, (E.P. Klement, S. E. Rodabaugh, eds.), Trends in Logic, vol 20. Kluwer Academic Publishers, Dordrecht, 2003, 53–106.
- [7] S. Jenei, On reflection invariance of residuated chains, Annals of Pure and Applied Logic, Volume 161, Issue 2, November 2009, Pages 220–227.
- [8] S. Jenei, On the structure of rotation-invariant semigroups, Archive for Mathematical Logic, 42 (2003), 489– 514.
- [9] S. Jenei, On the relationship between the rotation construction and ordered abelian groups, Fuzzy Sets and Systems (in press)
- S. Jenei, Structural description of a class of involutive uninorms via skew symmetrization, Journal of Logic and Computation, doi:10.1093/logcom/exp060
- [11] S. Jenei, F. Montagna, On the continuity points of left-continuous t-norms, Archive for Mathematical Logic, 42 (2003), 797–810.
- [12] K.C. Maes, B. De Baets, On the structure of left-continuous t-norms that have a continuous contour line, Fuzzy Sets and Systems 158 (2007), 843–860.
- [13] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic, 72(3): 834-864, 2007.
- [14] R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, Vol. 80 (1996), 111-120.