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Correlation coefficient 

Correlation coefficient is a fundamental concept in data analysis 

measuring positive and negative relationships between variables.  

Sample Pearson’s correlation coefficient:   

-1 ≤ corr(x,y) ≤ 1 



Limitations of the correlation coefficient 

Correlation coefficient is a measure of linear relationship of 

variables  

Example:  For data with perfect nonlinear relationship  

y = Ax2+Bx+C,         

 corr(x,y) = 0 

Chatterjee, S., Hadi, A. S. Regression analysis by example. John Wiley 

& Sons, 2013. p. 25 



Shortcomings of the correlation coefficient 

INVESTOPEDIA:   

http://www.investopedia.com/terms/c/correlation.asp 

 

Positive Correlation: A relationship between two 

variables in which both variables move in tandem. A 

positive correlation exists when as one variable decreases, 

the other variable also decreases and vice versa.  

 

For the example above it should be A(x,y) > 0  

but we have corr(x,y) = 0 

 

Negative Correlation: A relationship between two 

variables in which one variable increases as the other 

decreases, and vice versa.  

 

For the example below it should be A(x,y) < 0  

but we have corr(x,-y) = 0 

 

http://www.investopedia.com/terms/c/correlation.asp


The magic of statistics 

Papadimitriou, S., Sun, J., Yu, P. S. Local correlation tracking in time series. In: 

ICDM'06. Sixth Intern. Conf. Data Mining: 

“The global cross-correlation coefficient of 4-FRF and 9-ESP is 0.30, which is 

statistically significant, exceeding the 95% confidence interval of ±0.04. “ 

corr(4-FRF, 6-JPY) = 0.62 > 0.30  But it should be inverse relation  !!!  

Correlation is not useful for TS shape association analysis. 

We need another time series association measure, not the correlation coefficient !  

2567 work-daily spot prices (foreign currency in dollars) over the period 10/9/86 - 8/9/96.  



Correlation between membership functions 

The measure of correlation of membership functions (in case of finite domain): 

Does it has some statistical meaning? 

 

C. A. Murthy, S. K. Pal, and D. Dutta Majumder. "Correlation between two 

fuzzy membership functions." Fuzzy Sets and Systems vol. 17, 1, pp. 23-38, 

1985. 



Association measures 
• Pearson's correlation coefficient  

• Spearman's rank correlation coefficient  

• Kendall's rank correlation coefficient (τ) 

• Local trend association measure 

• Correlation of fuzzy sets 

• Association rules 

… 

1. Is it possible to introduce and analyze the general class of 

functions that can serve as non-statistical association measures 

similar to correlation coefficient? 

2. How to generate such functions for different classes of objects: 

time series, elements of [0,1], fuzzy sets, fuzzy sets of type 2, 

interval valued fuzzy sets etc ? 



Properties of Pearson´s correlation coefficient 
The properties of the correlation coefficient (defined for n-tuples):  

corr(x,y) = corr(y,x), (1) 

corr(x,x) = 1,  (2) 

corr(x, –y) = –corr(x,y), (3) 

 

corr(–x, –y) = corr(x,y), (4) 

corr(x, –x) = –1,  (5) 

corr(x,x) ≥ corr(x,y). (6)          

 

(4)-(6) follow from (1)-(3). 

(5) and (2) are contradictive if xi = 0 for all i= 1,…,n 

corr(x,y) does not defined for x = const, we have 0 in denominator 

 

• We need to avoid such contradictions between desirable properties of 

association measure.  

• We need to define association measure on different domains and can 

replace –x  by operation with the similar property 

• It is possible to consider additional axioms (requirements) depending on 

domain 



Reflection operation 

Definition 1. A function N:XX , |X|>1, satisfying the following properties: 
 
 N(N(x)) = x   for all xX           (involutivity)   (2) 
 N(x) ≠ x for some xX    (3) 
 
is called a reflection on X. An element xX, such that 
 
              N(x) = x,      (4) 
 
is called a fixed point of N in X.  
The fixed points will be denoted by xFP, hence for any fixed point xFP it is 
fulfilled: 
                   N(xFP) = xFP.      (5) 
 
Denote FP(N,X) the set of all fixed points of N in X. This set can be empty. 
 
Examples.  1) X = Rn, x = (x1,…, xn), N(x)= – x = (–x1,…,–xn) 
 2) X = [0,1], N(x) is a strong negation, e.g. N(x) = 1 – x  



Association measure 
Definition 2. Let V be a subset of X, |V| > 1, N be a reflection on X and the 

restriction of N on V be a reflection on V. A function A:VV[–1,1] satisfying 

for all x,yV the properties: 
 
 A(x,y) = A(y,x),                                 (symmetry)   (6) 
 A(x,x) = 1,                                        (reflexivity)   (7) 
 A(x,N(y)) = –A(x,y),          (inverse relationship)   (8) 
 
is called an association measure on V. 
Proposition 1. If A is an association measure on V⊆X  then V⊆X\FP(N,X). 

Proposition 2. The association measure A on V satisfies for all x,yV the 

properties: 

            A(x,N(x)) = –1,      (9) 

            A(N(x),N(y))= A(x,y),     (cancellation of reflections)   (10) 

            A(x,N(y)) = A(N(x),y).    (permutation of reflections) (11) 

Definition 4. A function A:XX[–1,1] will be called an association measure 

of type 1 on X if (6) and (8) are fulfilled for all x,y∊X and (7) is fulfilled for all  

xFP(N,X):  

 A(x,x) = 1,          for all xFP(N,X)   (7a) 

 



Association measure of type 1 on X 
Definition 4. A function A:XX[–1,1] will be called an association measure 

(of type 1) on X if for all x,y∊X it is fulfilled  

 A(x,y) = A(y,x),      (6) 

 A(x,x) = 1,          for all xFP(N,X)   (7a) 

 A(x,N(y)) = –A(x,y),     (8) 

Proposition 4. An association measure A (of type 1) on X satisfies for all 

x,yX the properties 

 A(N(x),N(y))= A(x,y),     (cancellation of reflections)   (10) 

 A(x,N(y)) = A(N(x),y).    (permutation of reflections) (11)

 A(x,N(x))=  –1       if   xFP(N,X),  (14) 

 A(x,xFP)= A(xFP,x)=  0,    for all xFPFP(X,N), (15) 

 A(xFP,xFP)=  0.     (16) 

 



Association measure of type 1 on X 
Definition 5. Suppose X is a subset of real values R, and N is a reflection on X 

with a unique fixed point c = xFP. An association measure A:XX[–1,1] on X 

is called c-separable  if the following properties are fulfilled for all x,yX: 

 A(x,y) > 0             if     x, y > c   or   x, y < c,  (17) 

 A(x,y) = 0       if     x = c   or   y = c,  (18) 

 A(x,y) < 0             if    x < c < y   or   y < c < x. (19) 

Example 3. X = [0,1]  

N(x)= 1–x. c= xFP = 0.5 

A(x,y) = A(y,x)  

A(x,x) = 1,            if x≠c   

A(x,N(x))=  –1      if   x≠c 

A(x,c)= A(c,x)=  0 

A(x,N(y)) = –A(x,y) 

Example. A(x,y) = sign((x–c) (y–c))  

 



Association between fuzzy (plausible) predicates 

P(x), Q(y) [0,1] 

It is reasonable to have association measure such that: 

A(P,Q) > 0    if      P(x), Q(y) > 0.5   

                     or     P(x), Q(y) < 0.5 

A(P,Q) < 0    if      P(x) < 0.5 < P(y)  

                     or     P(x) > 0.5 > P(y) 

for all x,y X 



Association measure on the set of time series 
X is a set of real n-tuples x = (x1,…, xn), (n>1),  

q(n) = (q,q,…,q) is a constant n-tuple, q  is real. 

N(x)= – x = (–x1,…,–xn) is a reflection with a unique fixed point 0(n) =(0,0,…,0). 

Define x+y = (x1+y1, …, xn+yn), py+q= (py1+q, …, pyn+q), p,q are real, p > 0.  

Definition 3. Suppose V X, |V| > 1, such that  

 from x∊V it follows –x∊V, and x+q∊V for all real q.  

A function A:VV [–1,1] satisfying for all x,y∊V and for all real q the properties  

 A(x,y) = A(y,x),    (symmetry)    (6) 

             A(x,x) = 1,                            (reflexivity)    (7) 

       A(x,N(y)) = –A(x,y),           (inverse relationship)   (8) 

    A(x+q,y) = A(x,y),  (translation invariance)  (12) 

is called a time series shape association measure on V.  

If for all x∊V and for all p>0 it is fulfilled px∊V and A satisfies on V the property:  

 A(px,y) = A(x,y),  (scale invariance)  (13) 

then A is called a scale invariant time series shape association measure. 



Moving Approximation Transform (MAT) and local 

trend association measure  

Batyrshin I., Sheremetov L. …(2004,2007)  

Calculate least squares approximations 

fi = ait+bi of time series x = (x1,…, xn)  

in sliding window of size k. Replace x 

by sequence of local trends:  

 

 MATk(x)= (a1, …, an-k+1).  

 

Local trends a1, …, an-k+1 depend  

on the size of window k.  

Example: k = 5 

Local trend association measure:  
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Association measure on the set of time series 

Proposition 4. If A is a time series shape association measure on V  

then V⊆X\XC, where XC is a set of all constant  n-tuples.  

 

Example. corr(x,y) is a scale invariant association measure on V = 

X\XC  

 

Example. Local trend association measure ltak(x,y) is a scale 

invariant association measure on V= X\XMk0 where XMk0 is a set of 

all time series x such that MATk(x)= 0(m), i.e. axi = 0 for all i=1,…, 

m.  



Association measures related with 

similarity measures 
A similarity measure  SIM:XX[0,1]  satisfies for all x, y from X:  

 SIM(x,y) = SIM(y,x),  

 SIM(x,x) = 1. 

An association measure A related with SIM: 

 A(x,y) > 0,  if   SIM(x,y) > SIM(x,N(y)),  

 A(x,y) < 0,  if   SIM(x,y) < SIM(x,N(y)). 

Can we use (?) the difference between SIM(x,y) and SIM(x,N(y)):  

 A(x,y) = SIM(x,y) – SIM(x,N(y)) 

• What properties should be fulfilled for SIM to obtain 

association measure A satisfying the desirable properties? 

• Can we use here pseudo-difference operation related with t-

conorms ?  

 



t-conorms 
t-conorm is a function S:[0,1]2 [0,1] satisfying 

  commutativity,    associativity,    monotonicity  

 boundary condition:  S(a,0)= a.  

We have:     S(1,a) = S(a,1) = 1,         S(0,a)= S(a,0)= a.  

aϵ]0,1[ is a nilpotent element of S if there exists bϵ]0,1[ such that 

 S(a,b) = 1.  

t-conorm S has no nilpotent elements if and only if  

      from S(a,b) = 1 it follows a = 1 or b = 1 

Examples: 

 SM(a,b) = max{a,b},  (maximum) 

      SL(a,b) = min{a+b, 1}, (Lukasiewicz t-corm) 

      SP(a,b) = a+b–ab.  (probabilistic sum) 

SM and SP  have no nilpotent elements but SL has.   



S-difference and pseudo-difference 

Let S be a t-conorm. S-difference is defined by: 

     𝑎
𝑆
𝑏 = 𝑖𝑛𝑓 𝑐 ∈ [0,1] 𝑆(𝑏, 𝑐) ≥ 𝑎    for any a,b in [0,1].  

Pseudo-difference associated (related) to S is defined by: 

    𝑎(−)𝑆𝑏 =

       𝑎
𝑆
𝑏,           𝑖𝑓 𝑎 > 𝑏

− 𝑏
𝑆
𝑎 ,        𝑖𝑓 𝑎 < 𝑏

            0,              𝑖𝑓 𝑎 = 𝑏

       for any a,b in [0,1]2 

Equivalently 

𝑎(−)𝑆𝑏 = 𝑠𝑖𝑔𝑛(𝑎 − 𝑏)(𝑚𝑎𝑥 (𝑎, 𝑏)
𝑆
𝑚𝑖𝑛 (𝑎, 𝑏)).  

 



Pseudo-differences related with basic t-conorms 

   SM(a,b) = max{a,b}  (maximum) 

   SL(a,b) = min{a+b, 1}  (Lukasiewicz t-conorm) 

   SP(a,b) = a+b–ab  (probabilistic sum) 

 

   𝑎(−)𝑀𝑏 =  

    𝑎,    𝑖𝑓 𝑎 > 𝑏
−𝑏,     𝑖𝑓 𝑎 < 𝑏
    0,    𝑖𝑓 𝑎 = 𝑏

,   

   𝑎(−)𝐿𝑏 = 𝑎 − 𝑏.  

   𝑎(−)𝑃𝑏 = (𝑎 − 𝑏)/(1 − min (𝑎, 𝑏)).   

 



Similarity measures 
SIM:XX[0,1] is a similarity measure on X if it satisfies the 
properties:  

   SIM(x,y) = SIM(y,x)  (symmetry) 

   SIM(x,x) = 1   (reflexivity) 

--------------------------------------------------------------------  

   SIM(N(x),N(y)) = SIM(x,y)  (cancellation of reflections) 

   SIM(x,N(y)) = SIM(N(x),y)  (permutation of reflections) 

 

   SIM(x,y) < SIM(x,x)  for all x≠y   (strict reflexivity) 

   SIM(x,N(x)) < 1  (weak similarity of reflections)  

   SIM(N(x),x) = 0.  (non-similarity of reflections)  

 



Main result 

Theorem 2. Suppose X is a set with a reflection N, V⊆X\FP(N,X), 

|V| > 1, V is closed under N and the restriction of N on V is a 

reflection on V, S is a t-conorm and SIM is a similarity measure 

on X satisfying the properties of cancellation of reflections and 

weak similarity of reflections then the function  

ASIM,S:VV [–1,1] defined for all x,yV  by 

ASIM,S(x,y) = SIM(x,y)(–)S SIM(x,N(y)), 

is an association measure on V if one of the following is true 

a) the t-conorm S has no nilpotent elements    (29) 

b) SIM(x,N(x)) = 0, for all xV      (non-similarity of reflections) 



Association measure on [0,1] 

Theorem 3. Suppose N is a strong negation, S is a t-
conorm, SIM is a similarity measure on [0,1] satisfying 
the properties of cancellation of reflections and weak 
similarity of reflections then the function 
ASIM,S:[0,1][0,1][0,1] defined for all x,y[0,1] by: 

 

𝐴𝑆𝐼𝑀,𝑆 𝑥, 𝑦 = 𝑆𝐼𝑀(𝑥, 𝑦) ⊖𝑆 𝑆𝐼𝑀(𝑥, 𝑁(𝑦)),  (37) 

 

is an association measure on [0,1] if one of the 
following is fulfilled: 

1) SIM(x,N(x)) = 0,   for all x[0.1],   (38) 

2) the t-conorm S has no nilpotent elements. (39) 

 



Association measure of type 1 on X 

Definition. Suppose X =[0,1], N is a strong  negation with a unique fixed point 

c. An association measure A:XX[–1,1] on [0,1] is called c-separable  if the 

following properties are fulfilled for all x,yX: 

 A(x,y) > 0             if     x, y > c   or   x, y < c,   

 A(x,y) = 0       if     x = c   or   y = c,   

 A(x,y) < 0             if    x < c < y   or   y < c < x.  

Definition. A similarity measure SIM is strict monotonic if for all x,y,z[0,1] 

it is fulfilled: 

SIM(x,z) < min(SIM(x,y), SIM(y,z))   if x < y <  z .  

Theorem 4. Suppose in the conditions of Theorem 3 the t-conorm S is 

continuous at the point 0 in both arguments and the similarity measure SIM is 

strict monotonic then the association measure  

  ASIM,S(x,y) = SIM(x,y)(–)S SIM(x,N(y)), 

is c-separable. 

 



Proposition 7. Suppose f,g:[0,1]→[0,1] are automorphisms of [0,1] and g 

defines the strong negation N on X=[0,1] then the function  

  SIM(x,y) = 1 – f(|g(x) – g(y)|) ,  

is a similarity measure on X= [0,1] satisfying the properties of the strict 

monotonicity, the strict reflexivity and hence the weak similarity of reflections, 

the cancellation of reflections with respect to N, but it does not satisfy the non-

similarity of reflections property.  

  𝑆𝐼𝑀 𝑥, 𝑦 = 1 − 𝜑−1( 𝜑 𝑥 − 𝜑(𝑦) ), 

For generator 𝜑 𝑥 = 𝑥 of standard negation N(x) = 1 – x, we obtain: 

 𝑆𝐼𝑀 𝑥, 𝑦 = 1 − 𝑥 − 𝑦 . 

Constructing SIM satisfying the cancellation of 

reflections property SIM(N(x),N(y)) = SIM(x,y) 



𝐴𝑆𝐼𝑀,𝑆𝑀 𝑥, 𝑦 =  

     1 − 𝑥 − 𝑦       𝑖𝑓    𝑥, 𝑦 > 0.5     𝑜𝑟   𝑥, 𝑦 < 0.5 

𝑥 + 𝑦 − 1 − 1     𝑖𝑓  𝑥 < 0.5 < 𝑦  𝑜𝑟  𝑦 < 0.5 < 𝑥
0                   𝑖𝑓      𝑥 = 0.5  𝑜𝑟  𝑦 = 0.5

 

For standard negation N(x)=1-x, fixed point c = 0.5, pseudo-difference (–)S  

related with SM(a,b) = max{a,b}, (maximum), 𝑆𝐼𝑀 𝑥, 𝑦 = 1 − 𝑥 − 𝑦 : 



𝐴𝑆𝐼𝑀,𝑆𝑃 𝑥, 𝑦 =  

𝑥 + 𝑦 − 1 − 𝑥 − 𝑦

𝑚𝑎𝑥 { 𝑥 + 𝑦 − 1 , 𝑥 − 𝑦 }
                  𝑖𝑓   𝑥, 𝑦 ≠ 0.5

  0                                 𝑖𝑓  𝑥 = 0.5  𝑜𝑟  𝑦 = 0.5

 

For standard negation N(x)=1-x, fixed point c = 0.5, pseudo-difference (–)S  

related with SP(a,b) = a+b–ab, (probabilistic sum), 𝑆𝐼𝑀 𝑥, 𝑦 = 1 − 𝑥 − 𝑦 : 



Association measure of type 1 on X 

Example 3. X = [0,1], Yager negation: 𝑁𝑝 𝑥 = 1 − 𝑥𝑝
𝑝

,  𝑝 > 0,  

𝑐 = 0.5
𝑝

. 

 



Example of distance based association 

measure on fuzzy sets 

SIM(x,y) = 1 −
1

𝑛
 𝑔(𝑥𝑖) − 𝑔(𝑦𝑖)

2𝑛
𝑖=1   

where g(x) is a generator of involutive negation 

on [0,1].  

For A(x,y)=ASIM,P(x,y) and Zadeh negation  

N(x)=1-x with generator g(x) = x we obtain: 

A(x,y) =
 (2𝑥𝑖−1)(2𝑦𝑖−1)
𝑛
𝑖=1

𝑚𝑎𝑥( 𝑥𝑖−𝑦𝑖
2,𝑛

𝑖=1  𝑥𝑖+𝑦𝑖−1
2𝑛

𝑖=1 )
.  

 



Constructing SIM satisfying the cancellation of 

reflections property SIM(N(x),N(y)) = SIM(x,y) 
Definition 14. A function M:[0,1]×[0,1]→[0,1] is an aggregation function of two 

arguments if it is non-decreasing in each arguments and satisfies: 

  M(x,y) = M(y,x)                  (symmetry)  

 M(0,0)= 0,    M(1,1)= 1,     (boundary conditions)  

Proposition 6. If M is an aggregation function and SIM is a similarity measure then 

 SIMM(x,y) = M(SIM(x,y),SIM(N(x),N(y)))   (32) 

is the similarity measure satisfying the cancellation of reflections property (26).  

SIMM  is strict reflexive if SIM  is strict reflexive and M satisfies: 

 M(a,b) < 1   if   min(a,b) < 1.    (33) 

Examples:  SIMM(x,y) = min(SIM(x,y),SIM(N(x),N(y))), (34) 

   SIMM(x,y) = (SIM(x,y)+SIM(N(x),N(y)))/2. (35) 



Similarity and dissimilarity measures 

Definition 15. A function D:XX [0,1] is a dissimilarity measure on 
X if it satisfies:   

 D(x,y) = D(y,x),        

 D(x,x) = 0. 

 

If D is a dissimilarity measure and U:RR is a strictly decreasing 
nonnegative real function such that U(0)= 1, then the function  

 SIMD(x,y)=U(D(x,y))  

is a similarity measure.  

If it exists some positive constant H such that D(x,y) ≤ H for all x,y and 
W is a strictly increasing function such that W(0)= 0, W(H) ≤ 1, then a 
similarity function can be obtained as follows: 

 SD(x,y)= 1 – W(D(x,y)). 

 



Examples of     SD(x,y)= U(D(x,y)) 

Simmilarity and dissimilarity measures 



I. Standardization of time series values 

A transformation F of time series x of length n 
into time series  F(x) of the same length  is said to 
be a standardization if for all non-constant time 
series x it is fulfilled: 

F(F(x)) = F(x).  (idempotency) 

Two additional requirements on standardization 
transformation can be considered:  

F(x) ≠ const  if x ≠ const, 

F(q(n)) = 0(n),  for any real value q.  

 



Standardization of time series values 

A time series x is said to be in a standard 

form wrt a standardization F if F(x) = x. As 

it follows from the definitions, a 

standardization transforms any time series x 

into a standard form F(x).  

A transformation E of time series x of length n 

into real value E(x) is said to be an estimate of 

x.  

 



Standardization of time series values 

Proposition. Suppose E1(x) is a translation 
additive estimate such that E(q(n))=q, then the 
transformation  

F(x)= x–E(x),   

is a translation invariant standardization such 
that  

E(F(x)) = 0. 

If E(x) is an odd function, then F(x) is an odd 
function. If E(x) is scale proportional then F(x) is 
scale proportional. 

 



Standardization of time series values 

Proposition 3. Suppose E1(x) is a translation additive 
and scale proportional estimate such that E(q(n))=q, 
and  E2(x) ≠ 0 is a translation invariant and scale 
proportional estimate then the transformation  

F(x)=(x-E1(x))/E2(x) 

is a translation invariant and scale invariant 
standardization such that  

E1(F(x)) = 0. 

If E1(x) is an odd function and E2(x) is an even function, 
then F(x) is an odd function. 

If  then F(x) satisfies r-normality.  

 

 



Proposition 8. Let X be the set of time series of the length n and D(x,y) = 

Dr,F(x,y): 

         (39) 

 

where F:R→ R. A dissimilarity measure D satisfies on V⊆X\XC the property  

 D(N(x),N(y))= D(x,y),  (cancellation of reflections) (42) 

if for all xV the function F satisfies the following condition : 

 F(N(x))+F(x) = Q,      (43) 

where Q = const. 

 D(N(x),x) > 0 if in (43) F(xi) ≠ Q/2 for some xV.  

 D(N(x),x) = 2 if in (43) Q= 0 and for all xV it is fulfilled r-normality: 

 

Constructing SIM satisfying the cancellation of 

reflections property SIM(N(x),N(y)) = SIM(x,y) 



Minkowski distance → Association  

SIMD(x,y)=U(D(x,y))  

If it exists some positive constant H such that D(x,y) ≤ H for all 

x,y and W is a strictly increasing function such that W(0)= 0, 

W(H) ≤ 1, then a similarity function can be obtained as follows: 

 SD(x,y)= 1 – W(D(x,y)). 

 

Corollary. A shape association measure defined in Proposition 

coincides with a cosine similarity measure: 

Acos,F(x,y) = cos(F(x),F(y)),  

if r=2, i.e. D(x,y)= D2,F(x,y) is Euclidean distance, and if W(D) 

is defined as follows: .   



Minkowski distance → Association  

where F(x) is some standardization of time series x. 

F is an odd function, i.e. it satisfies:      F(-x)= –F(x). 

D →  S → A,            F → D →  S → A 



Constructing Pearson’s correlation coefficient 
Example 5. Let X be a set of real n-tuples x = (x1,…, xn), (n>1), 

with the reflection operation N(x)= – x= (–x1,…,–xn). Define 

dissimilarity measure by  

𝐷 𝑥, 𝑦 =  𝐹 𝑥𝑖 − 𝐹 𝑦𝑖
2𝑛

𝑖=1 , 

where F(xi) is given by: 

𝐹 𝑥𝑖 =
𝑥𝑖−𝑥 

 (𝑥𝑗−𝑥 )
2𝑛

𝑗=1

, 𝑥 =
1

𝑛
 𝑥𝑗
𝑛
𝑗=1 , 

and 𝑆𝐼𝑀 𝑥, 𝑦 = 1 −
1

4
𝐷(𝑥, 𝑦)2 =

1

4
 𝐹 𝑥𝑖 − 𝐹 𝑦𝑖

2𝑛
𝑖=1 .Then                                        

corr(x,y) = SIM(x,y) (–)SSIM(x,N(y)), 

where the pseudo-difference operation a(–)Sb  = a – b, i.e.  
associated to Lukasiewizc t-conorm.  

 

 

 



Example of normalized Google Finance data after 

smoothing by moving average (w=5). 



Positively (two charts 

at the top) and 

negatively (two charts 

on the bottom) 

associated moving 

approximations of 

BBRY and AAPL data 

in sliding window of 

size k =30. 







Moving Approximation Transform (MAT) and local 

trend association measure  

Batyrshin I., Sheremetov L. …(2004,2007)  

Calculate least squares approximations 

fi = ait+bi of time series x = (x1,…, xn)  

in sliding window of size k. Replace x 

by sequence of local trends:  

 

 MATk(x)= (a1, …, an-k+1).  

 

Local trends a1, …, an-k+1 depend  

on the size of window k.  

Example: k = 5 

Local trend association measure:  


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Foreign Exchange Rates 

Time series of 

Foreign 

Exchange 

Rates (money 

of different 

countries to 

one U.S. 

Dollar) 

measured daily 

since  

2004-09-02 to 

2004-10-15 



Local trend 

association 

network of 

foreign 

exchange 

rates obtained 

for small 

windows. Only 

links with high 

associations 

are shown.  

MAT and association networks 

7.India 

12. Thailand 

9. South Korea 

10. Taiwan 

17.Norway 

16. Sweden 

1. Denmark 

13. Switzerland 

3. Canada 2. China 

4. Brazil 6. Mexico 

14. Shi Lanka 

15. Singapore 

11.South Africa 

5.Hong Kong 

8. Japan 



Global trend 

association 

network of foreign 

exchange rates 

obtained for large 

windows. Only 

high associations 

are shown.  

MAT and association networks 

7.India 

12. Thailand 

9. South Korea 

10. Taiwan 

17.Norway 

16. Sweden 

1.Denmark 

13. Switzerland 

3. Canada 2. China 

4. Brazil 6. Mexico 

14.Shi Lanka 

15.Singapore 

11.South Africa 

5.Hong Kong 

8. Japan 



Gross internal product of Mexico 

Gross internal product of Mexico 

checked quarterly over the period 

1980 – 2003 (96 data). 

1. Farming, Forestry and Fishes;  

2. Mining 

3. Manufacturing Industry 

4. Construction 

5. Electricity, Gas and Water 

6. Commerce, Restaurants and 

Hotels 

7. Transport, Storage and 

Communications 

8. Financial Services, Insurance, 

Real Estate Activities and Rent 

9. Social and Personal Communal 

Services 

10. Liability to Banking Services 

Allocate 



Association network of Mexican indexes of economics 

 



How to define association measure on 

the set of subsets of [0,1], 

on the set of interval valued truth or 

membership values ??? 



Association Measures on the Set of 

Subintervals of [0,1] 

Denote D[0,1] the set of all closed subintervals 
of [0,1], i.e. D[0,1] = {a*= [a–, a+]⊆[0,1]}, 
where a–, a+[0,1], a– ≤ a+. 

Definition. Suppose neg is an involutive 
negation of [0,1]. An involution (reflection) 
N:D[0,1] D[0,1] on D[0,1] is defined for all 
a*⊆[0,1] as follows: 

         N(a*) = N([a–, a+]) = [neg(a+), neg(a–)]  

It is fulfilled:  N(N(a*)) = a*  



Set of fixed points of N on D[0,1] 

Proposition. The set of fixed points of N on D[0,1] is the 
following: 

 FP= {[a, neg(a)] | a[0,1], a ≤ aFP},   

where aFP is the fixed point of a negation neg on [0,1]. 

 

Example. For the negation of Zadeh  neg(a)=1–a, we 
have 

 

 FP= {[a, 1–a ] | a[0,0.5]},  

 

e.g. [0,1], [0.1,0.9], [0.4,0.6], [0.5,0.5] etc. 



Association measure on D[0,1]\FP 

related by SM 
Define the similarity measure on D[0,1]: 

 SIM(a*,b*) = 1 – 0.5(|a– – b–| + |a+ – b+|). 

Association measure on D[0,1]\FP related by SM: 

 AM(a*,b*) = 1 – 0.5P,     if Q > P; 

 AM(a*,b*) = 0.5Q  – 1,   if Q < P;  

 AM(a*,b*) = 0,                if Q = P.   

where 

 P = |a– – b–| + |a+ – b+|   

 Q = |a– + b+–1| + |a+ + b– –1|. 



Association measure on D[0,1]\FP 

related by SP 

 AP(a*,b*) = (Q – P)/max(Q,P)  

where 

 P = |a– – b–| + |a+ – b+|   

 Q = |a– + b+–1| + |a+ + b– –1|. 

 

where Q and P are defined in (29), (30). 

 



Examples 

a*= [0.1, 0.3],   b*= [0.2, 0.4], c*= [0.8, 0.9],  

d*= [0.6, 0.8],   e*= [0.2, 0.7] 

 

AM(a*,b*) = 0.9, AM(a*,c*) = –0.95,  

AM(b*,d*) = –1,  AM(a*,e*) = 0.75. 

 

AP(a*,b*) = 0.8,  AP(a*,c*) = –0.92,  

AP(b*,d*) = –1,   AP(a*,e*) = 0.29. 

 

 



Conclusions 

The general approach to definition and 
construction of association measures is 
developed. It is an interesting and promising 
task to extend these results on various types of  
sets with reflection operations, on other types 
of similarity measures and to use them in 
various tasks of data analysis and data mining. 



 

Thank you very much! 

 

Ildar Batyrshin 

CIC IPN, Mexico 
batyr1@gmail.com 
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