.

Safe Human-Computer
Interface Based on Efficient
Image Processing Algorithm

S. Wilding, P. Walker, S. Clinton, D. Williams, and J. Olszewska

Content

* The Context
* Socially-Distanced Reality
 Human-Computer Interface
* Human-Centred Computer-Vision

* The Solution
e Safe, Remote Human-Computer Interaction

* New Image Processing Algorithm
e Testing & Deployment

The Context

Human-Computer Interface

Human Computer

Thoughts

- Sensory
Perception

Task

Understanding vt

Human-Centred Computer Vision

T W . m12ar

human

remote
Interaction

C—

computer

The Solution

LB -]

20

2l
22

24

New Image Processing Algorithm

function findMarker (inputImage)

end

tseperate the green channel from the
other colour channels in the image

inputImage = inputImage (:,:,2) -
inputImage{:, :,1)/2 -
inputImage(:, :,3)/2;

tthreshold the image so that green

inputImage = inputImage > 50;

$(remove smaller ckijects from the image
inputImage = bwareacpen (inputImage, 30);
%use regilon preops te acguire the

dimensicons of any detected green cbiject

dimensions = reglonprops(inputImage,
'Centroid', 'MajorAxisLength',
'"MinorAxisLength', 'Area');
¥check 1f an object was detected
if isempty (dimensions)
%if no cbject detected, then set
dimensions to zero
center = [0,0]; radius = 0;
else

5if an object was detected, then
isolate the dimensicns of the
ocbject with the largest area

[—y1d] = max {[dimensicons.Areal);

$store the coordinates for the
center of the chiject

center = [dimensicns(id) .Centroid];
%calculate and store the radius of
the object

radius = mean([dimensions (id).

MajorAxislength, dimensions(id).

MincrAxisLength], 2) / 2;

end

$return the acquired dimensicns of the
chiject

returnValue = [center, radius];

channel is abkove a specified intensity

1

[EReY
[

24
25
26
7

28

29

function

start_Callback (hObZect,eventdata, handles)
$define the function glocbal variables
global started;

globkal exit;

if started # true;

$continue if the function is not
already running

started = true;

%variable determining the cursor
stroke colour

global paintColour;

paintColour = [0 0 0]; %default
value is black

%check if a webcam is connected
if —isempty (webcamlist)
%2if a webcam is detected, then
establish a connection to it
cam = webcam;
%variable determining the
frame-per-second rate
fps = 30;
%acquires the resoclution of the
camera as a string and
[%¥Res, yRes] =
strtok (cam.resolution, 'x');
%separate horizontal and
vertical resolution by using

strtok with 'x' as a delimiter

yRes = strtok(yRes, 'x');

%convert the obtained resolution
values into numbers

xRes = strZ2double (xRes);

yRes = strZdouble (yRes);

%2loop while a webcam is detected
or until the user exits
while —isempty (webcamlist) &
exit =+ true;
fdirect ocutput to cam
preview axes
axes (handles. axesZ);
3obtain and store a mirrored
snapshot from the camera
img = flip(snapshot (cam), 2);
tsearch for a marker within
the image

47

49

51

52
53
54
55

56
57
58

-]

gaeza

marker = findMarker (img);
%display the snapshot in the
preview axes
imshow (img) ;
%check the radius of the
marker to determine if
one was present
if marker(3) > 0
$draw a circle arcund
the ball in the preview

hold con;

viscircles ([marker(l),
marker (2)], marker(3));

hold off;

%change the current axes
to the drawing canvas

axes(handles.axesl);

fplot to the canvas
using the marker
position, radius and
the current cursor
stroke colour

plot (marker (1), yRes— ...
marker(2), '.', .
"color',
paintColour,
"MarkerSize',
marker (3));

$remove numbers and ...
markers from side of
the axes

set (handles.axesl,
"®*TickLabel', [1,
'yTickLakel', [],
'xTick', [1,
'yTick', [1)i

$set the scale of the
axls to match the
webcam resolution

axis([0,xRes,0,yRes]);

$prevents changes from
being erased in the
next loocp

hold on;

end

fpause kefore loocpling again
to acguire the desired
frame-per—-second rate
pause (1/fps);
end
%Zsignal the program teo close
when the loop is exited
started = false;
close all;
else
%Zelse abort the execution of the
functicon
started = false;

I Safe, Remote HCI System

e Functional requirements of | < |l ° Acommon set of usability
the HCI system are gesture ' © 8
detection/
identification/tracking.

Non-functional requirements
of the HCl system are latency,
resolution, and stability.

Other requirements include
dependability,
efficiency, and safety.

requirements for HCI system
consists of learnability,
flexibility, robustness,
predictability, synthesiability,
familiarity, consistency,
generalization, dialogue
initiative, multithreading,
task_migrability,
substituability,
customisability,
observability,

recoverability,
responsiveness, and

task conformance.

Direct manipulation

Menu selection

Zoomable interaction (zoom out)

I HCI System Performance

* \WWe can observe in Table | that
the latency of our system
running on Computer 2 meets
the requirements for a real-time
HCI application, i.e. the latency
is below the minimum
acceptable latency which is
50mes.

Moreover, the detection rate of
our image-processing algorithm
when run on Computer 2
achieves real-time performance,
since it is equal or greater than

25Hz.

With Computer 1 With Computer 2
HCl system latency 2s 0.033s
Marker detection rate 2 fps 30 fps

Conclusions

Human beings are presently
surrounded by an increasing
number of pervasive machines
they have to interact with.

To help people with safe
interactions, and thus social
distancing with IT equipment
or intelligent agents, we
developed a safe, intuitive and
stable HCI to allow touch-free
interaction with indoor or
outdoor machines.

Our HCl system consists in an
accessible and non-invasive set-up
which is made of a single camera
mounted on a machine running a
software which is based on an
image-processing algorithm
computing and interpreting the
user’s marker gestures in real time
and real world environment.

The safety-by-design as well as
transparency of our system
together with its performance
make it suitable for industrial
and human-centered
applications.

