Multi-Objective Optimization for Dynamic Resource Provisioning in a Multi-Cloud Environment using Lion Optimization Algorithm

To be Virtually Presented At

20th IEEE International Symposium on Computational Intelligence and Informatics (CINTI 2020) planned to be organized on November 5-7, 2020 in Budapest, Hungary

3*y*

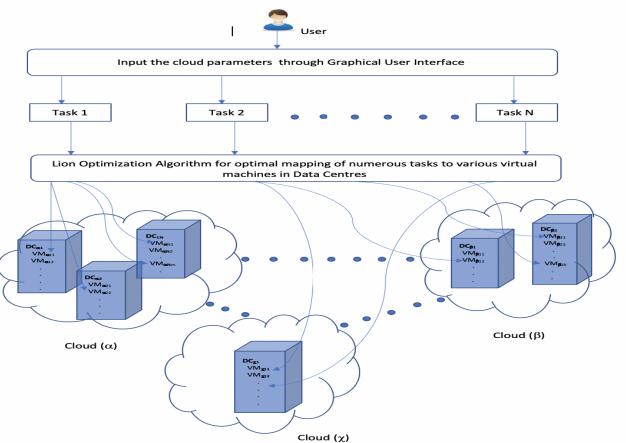
Shivani Agrawal

<u>Authors</u>

T Chaitra Shivani Agrawal Jeny Jijo Arti Arya

AGENDA

- Problem Statement
- System Architecture
- Proposed Algorithm
- Lion Optimization Algorithm
- Multi-Objective Optimization
- Results and Discussion
- Conclusion and Future Scope
- References



PROBLEM STATEMENT

- In recent years, developments in multi-cloud have been prominent because of its indispensible use in our day-to-day life.
- Many recent nature inspired algorithms like grasshopper optimization, hybrid bacteria foraging, whale optimization, etc, are used to solve multi-objective optimization problems like Process Selection, Machine Allocation, Finding the feasible solution and other maximization/minimization problem.
- Therefore, in this paper we are using Lion Optimization Algorithm (LOA) for optimizing multiobjectives like minimizing the cost, maximizing the revenue, etc, in order to improve dynamic resource provisioning performance in multi-cloud environment.
- As compared to Particle Swarm Optimisation (PSO), we have observed that LOA takes much less time with increasing no. of tasks.

SYSTEM ARCHITECTURE

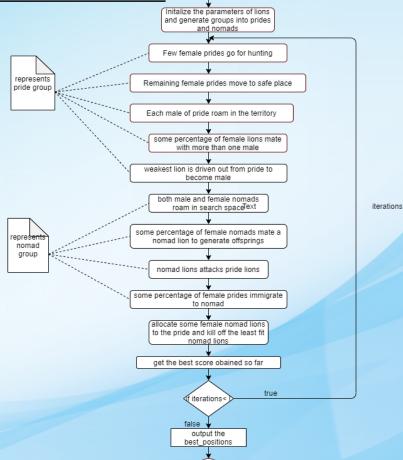
PROPOSED ALGORITHM

PROVISIONING OF TASKS TO VMS USING LOA

Require: Parameters P.

Ensure: Provisioned tasks to VMs inside clouds

- Get Parameters P_i from the user through the GUI
- Get or generate dataset
- Create multi-cloud environment by creating clouds, data centers and VMs.
- Call LOA function based on parameters.
- The output of LOA function, i.e., best positions of lions is mapped to VMs.
- 6. Cloud Simulation starts
- Provisioning of resources to tasks is done by broker
- 8. Cloud Simulation stops
- Display results of Provisioned tasks


CLOUD PARAMETER VALUES

Cloud Parameter	Value	
No. of tasks	10-100	
No. of Data Centers	5-25	
VM Size	5000-25000 (MB)	
VM RAM	256-512 (MB)	
VM MIPS	150-500	
VM Bandwidth	500-5000 (MB/sec)	
No. of CPUs	1-4	
File Size	100-500 (MB)	
Output File Size	200-500 (MB)	

LION OPTIMIZATION ALGORITHM

- Generate Population
- Hunting
- Move to Safe Place
- Roaming
- Mating
- Defence
- Migration

LOA PARAMETER VALUES

LOA Parameter	Value
npop	50
prideNo	4
percentNomad	0.2
roamingPercent	0.2
mutateProb	0.2
sexRate	0.8
mateProb	0.3
migrateRate	0.4

MULTI-OBJECTIVE OPTIMIZATION

Makespan

Average Response Time (ART)

Cost

Completion Time (CT)

 Average Resource Utilization (ARU)

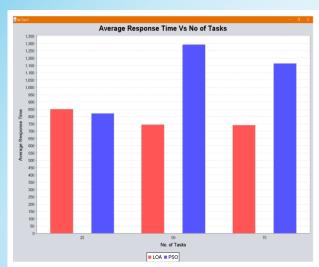
$$makespan = max(endTime - startTime)_{task_i}$$

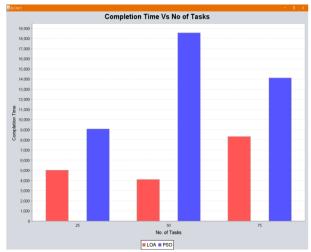
$$ART = \frac{\sum (endTime - startTime)_{task_i}}{n}$$
 where n is the total no. of tasks

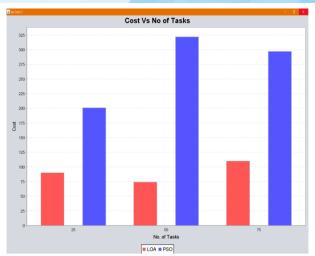
$$cost = \sum (C_i * T_i)_{resource_i}$$

$$where 'C'_i is the cost of resource_i$$

$$'T'_i is the total time taken by resource_i$$

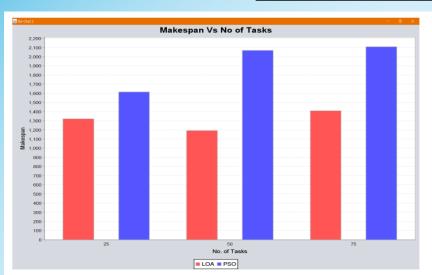

$$CT = \sum (endTime - startTime)_{task_i}$$

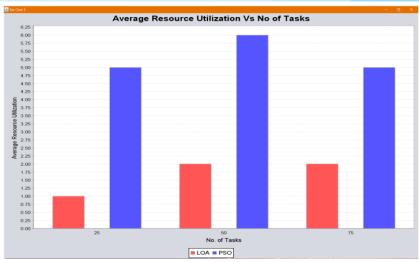

$$ARU = \frac{\sum (finishTime - startTime)_{task_i}}{makespan * m}$$
 where m is the total no. of tasks



RESULTS AND DISCUSSION

For the given parameters, No. of tasks = 50, No. of Data centers = 15, VM size = 15000 MB, VM Ram =512 MB, VM MIPS = 400, File Size = 300 MB, VM BW = 4000 MB/sec, Output File size = 400 MB, No. of CPUs = 2





RESULTS AND DISCUSSION

PERFORMANCE COMPARISON OF LOA OVER PSO

Objectives	PSO	LOA	PC(%)
CT(ms)	18564	4117	77.82
Makespan(ms)	2070	1192	42.41
Cost(Rs)	323	74	77.089
ART(ms)	1294	745	42.42
ARU(%)	6.25	2.08	66.72

$$PC\% = \frac{(Value_{LOA} - Value_{PSO})}{Value_{PSO}} * 100$$

CONCLUSION AND FUTURE SCOPE

- This paper addresses performance, efficiency and reliability issues of resource provisioning.
- The proposed method using LOA outperforms dynamic resource allocation for all considered objectives.
- The result of the proposed method shows better percentage of improvement as compared with the traditional PSO algorithm.
- In future, we have planned to consider the performance of the same parameters used in LOA and simulate them in the federated cloud environment.
- There will be a study on how to incorporate Live VM migration as a effective mechanism to balance the load.

<u>REFERENCES:</u>

- 1 Ab, Samah & Dogan, Meram & Alqahtani, Ebtdesam, A SURVEY ON RESOURCE ALLOCATION IN CLOUD COMPUTING", International Journal on Cloud Computing: Services and Architecture (IJCCSA). 6.10.5121/ijccsa.2016.6501.
- 2 Janmenjoy Nayak, Bighnaraj Naik, AK Jena, Rabindra K Barik, and Himansu Das, Nature inspired optimizations in cloud computing: applications and challenges", In Cloud Computing for Optimization: Foundations, Applications, and Challenges, pages 1–26. Springer, 2018
- 3 Mala Kalra, Sarbjeet Singh, A review of metaheuristic scheduling techniques in cloud computing", Egyptian Informatics Journal (2015) 16,275-295.
- 4 Prasad Devarasetty, Ch. Satyananda Reddy," Multi objective Ant colony Optimization Algorithm for Resource Allocation in Cloud Computing", International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-2S2 December, 2018.
- M. Feng, X. Wang, Y. Zhang and J. Li, "Multi-objective particle swarm optimization for resource allocation in cloud computing," 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012, pp. 1161-1165, doi: 10.1109/CCIS.2012.6664566.
- 6 M. Yazdani and F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm", Journal of Computational Design and Engineering, Vol.3, No.1, pp.24-36, 2016.
- N. Calheiros, Rajiv R, Anton B, Rajkumar B, CloudSim: a tool kit modeling simulation of cloud computing environments and evaluation of resource provisioning algorithms", Wiley Online Library, DOI: 10.1002/spe.995, 24 August 2010.
- provisioning algorithms", Wiley Online Library, DOI: 10.1002/spe.995, 24 August 2010.

 Panda, S. K., \& Jana, P. K. (2015). Efficient task scheduling algorithms for heterogeneous multi-cloud environment. The Journal of Supercomputing, 71(4),
- 1505–1533. doi:10.1007/s11227-014-1376-6
 9 S. Thamarai Selvi, Christian Vecchiola, Rajkumar Buyya, "Mastering Cloud Computing", Morgan Kaufmann, Edition ,2013.
- Anuradha VP, Sumathi D. A survey on resource allocation strategies in cloud computing. International Conference on Information Communication and Embedded System (ICICES); Chennai. 2014. p. 1–7.
- 11 Kumar S, Kumar Sharma V, Kumari R (2014) Self-adaptive spider monkey optimization algorithm for engineering optimization problems. Int J Inf Commun Comput Technol II:96–107
- 12 J. Vahidi and M. Rahmati, "Optimization of Resource Allocation in Cloud Computing by Grasshopper Optimization Algorithm," 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 839-844, doi: 10.1109/KBEI.2019.8735098.
- 13 M. A. Tawfeek, A. El-Sisi, A. E. Keshk and F. A. Torkey, "Cloud task scheduling based on ant colony optimization," 2013 8th International Conference on
- Computer Engineering & Systems (ICCES), Cairo, 2013, pp. 64-69.doi: 10.1109/ICCES.2013.6707172

 14 Sreelakshmi, S.Sindhu "Multi-Objective PSO Based Task Scheduling A Load Balancing Approach in Cloud",1st International Conference on Innovations in
- Information and Communication Technology (ICIICT), IEEE, 2019.
- Mahya Mohammadi Golchi, Shideh Saraeian and Mehrnoosh Heydari, "A hybrid of firefly and improved particle swarm optimization algorithms for load balancing in cloud environments: Performance evaluation", Computer Networks, ELSEVIER, 2019.
- D. Ardagna, "Cloud and Multi-cloud Computing: Current Challenges and Future Applications," 2015 IEEE/ACM 7th International Workshop on Principles of Engineering Service-Oriented and Cloud Systems, Florence, 2015, pp. 1-2, doi: 10.1109/PESOS.2015.8.
 - 7 Marwah Hashim Eawna, Salma Hamdy Mohammed, El-Sayed M. El-Horbaty,"Hybrid Algorithm for Resource Provisioning of Multi-tier Cloud Computing", Procedia Computer Science, Volume 65, 2015.
- I. Gupta, M. S. Kumar and P. K. Jana, "Compute-intensive workflow scheduling in multi-cloud environment," 2016 International Conference on Advances in Humanity Computing, Communications and Informatics (ICACCI), Jaipur, 2016, pp. 315-321, doi:10.1109/ICACCI.2016.7732066.

Advancing Technology

19 https://github.com/ShivaniSarah/Metaheuristic-Dynamic-Resource-Provisioning-in-Multi-Cloud-Environment/blob/master/README.md

THANK YOU!

Q/A

