
Studying the Evolution of Static Methods and their 
Effect on Class Testability

Cosmin Marsavina

University Politehnica of Timisoara, Romania

cosmin.marsavina@upt.ro

05.11.2020



Outline

• Introduction

• Methodology

• Analysis

• Discussion

• Conclusions

• Questions



Introduction
Testability

• Testing is one of the most important activities
that occur during software development

• In order for this activity to go smoothly the
production classes need to be highly testable

• We want to identify specific design flaws that
have a negative impact on testability



Introduction
Static Methods

• Static methods are generally perceived as one of
the main causes for reduced testability

• We argue that not all the static methods which
are utilized in complex systems are detrimental to
this software quality aspect (for example, the
ones that are part of utility classes)



Introduction
Research Questions

RQ1. How are static methods used in complex
software systems?

RQ2. Do all static methods affect testability in a
negative manner?



Introduction
Contributions

• A process through which static methods can be
identified and categorized that also examines
their evolution

• An empirical study that includes 6 open-source
projects in which we try to establish whether or
not the usage of static methods has a negative
impact on software testability



Methodology
Detecting and Categorizing Static Methods

• Static methods are identified by getting all the
methods from a class and filtering out the ones
without the static keyword

• We also categorize static methods based on:
1. the types of the classes they are part of: singletons, utility classes, and
the rest of the production classes that have at least one static method

2. whether or not they modify state: utilize mutable state or only operate
on their parameters



Methodology
Static Method Evolution

• After categorizing the static methods we want to
study how each type has evolved over the
lifespan of a system

• We use Git to collect the historical data needed
for this analysis:
1. we retrieve a project's source code from the corresponding repository

2. we iterate over its commits and compute the differences between the
current version and the previous one

3. we also record data related to the different types of static methods that
appear and the production classes that utilize them



Methodology
Quantifying Class Testability

• Testability is assessed based on the testing effort
that was put into a class

• This includes the line coverage obtained for the
production class and the two measurements for
its corresponding test class, namely:
1. the number of lines of code for the respective class

2. the number of assertions that are made in its test methods

• We want to establish which types of static
methods make testing more difficult



Methodology
Implementation



Analysis
System Selection

• 6 open-source systems that are commonly used
throughout the literature were selected based on
4 criteria; the projects needed to have:
1. a significant number of production classes

2. corresponding test classes that contain a large number of tests

3. a Git repository with a considerable amount of commits

4. a Maven project structure

• Even though all the projects meet the criteria they
are fairly different from one another in terms of
size and complexity, development practices, or
testing effort



Analysis
Categories of Static Methods

• Different types of static methods are more
common depending on a project’s characteristics
- for example, the Commons libraries and jFreeChart have a higher
percentage of utility classes compared to the other projects

- while for 2 of the systems, BCEL and Lang, there are more classes with
static methods that modify state, the other 4 have significantly more
methods that only operate on their parameters

• With the exception of Geode, the Singleton
pattern is rarely used in the other projects



Analysis
Evolution of Static Methods

• If instances from a category are present in the
first version of a system then their percentage is
generally higher than the one for the last version
considered

• The maximum values for the percentage of
classes that use methods of a specific type occur
at the beginning of the development process



Analysis
Impact on Class Testability

• Not all static methods have a negative effect on
the testability of the classes that utilize them

• Classes that use either utility classes or static
methods which only operate on parameters are
not tested less compared to the rest of the code

• In contrast, classes that utilize stateful singletons
or static methods which modify state appear to
be more difficult to test



Discussion
First Research Question

• We found that a large number of classes have
static methods and the percentage of production
classes that utilize them is quite high

• Different categories of static methods appear
more frequently depending on the specific type
of a system

• In terms of evolution, static methods are being
used less in later years than at the beginning of
the development process



Discussion
Second Research Question

• The results prove that not all types of static
methods negatively impact class testability

• While the usage of static methods that modify
state or are from stateful singletons causes a
production class to be tested less, there are other
categories of methods (e.g., from utility classes)
for which this is not the case



Discussion
Threats to Validity

• To avoid internal threats we:
1. tested the detection strategies against a number of small systems

2. verified if the differences between commits were computed correctly

3. manually checked the metrics calculated for quantifying testability

• We tried to mitigate external threats by selecting
projects with different characteristics, based on a
set of well-established criteria



Conclusions
Main Findings

• We showed that static methods are present in
the production classes and widely used
throughout the source code

• We have successfully proven that only some
categories of static methods hinder the testing
process



Conclusions
Future Work

• Improving the empirical study by analyzing more
projects (both open-source and commercial ones)

• Refining the method through which we quantify
class testability

• Identifying other design flaws that reduce the
testability of a production class



Questions


