
1Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, Budapest, Hungary
2John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary

3Faculty of Economics, J. Selye University

Ádám Pintér1 and Sándor Szénási2,3

IEEE 20th International Symposium on Computational Intelligence and Informatics

November 5-7, 2020, Budapest, Hungary

Automatic Analysis and Evaluation of Student Source Codes

Materials and method

Results

Conclusion

The model was implemented in C#. The data were given by the homework of OE-NIK SzTF2 course, which

were collected from the e-learning system of Óbuda University. The course was attended by a total of 364

students who had to complete 4 homework assignments during the semester, an overview of this is given in

Table 1. The 1247 source codes uploaded during the semester could be verified by automatic evaluation in just

3 hours, to which is added the time for syntactic rules and unit tests. Overall, a solution can be evaluated in

approximately 9 seconds. In contrast, instructors took an average of 30 minutes to complete a task, in addition

to which several (not perfectly working) solutions were marked as correct.

Overall, automatic assessment was found to be useful and forward-looking by both the students and the

faculty. The biggest benefit for the instructors was that the review process was speed up (~99% time savings)

and, thanks to the detailed report, students received more feedback on their submitted work, thus avoiding

more general questions. In addition to quick and detailed feedback, independent and unbiased evaluation was

the most important thing for the students, thanks to which they could master and complete the subject material

more successfully.

For more complex accounting, the model has not been used as an automated evaluation system, because in

such cases it is no longer necessary to run only an executable file, but even an underlying database or user

interface (GUI), which, although not impossible, is more difficult to verify. It would make it more time consuming

to build the evaluation logic than manual checking.

Our further development plans include expanding the rules of syntactic tests, automatically generating a large

number and full unit tests for the tasks, which can reveal the faulty code in more detail, and adapting the

evaluability of other programming languages taught at the University (Java, PHP, Assembly) to the model.

The source code evaluation model consists of the following main

steps (Fig. 1.):

- Download the list of students in the course.

- Collect the templates and student solutions for the, then create a

skeleton file that contains the templates and the unit tests

needed to check the tasks at runtime, as well as the syntax rules

for the task.

- Transforming students' source code into an abstract syntax tree

(AST), pre-processing the solution based on AST, and deeper

syntactic analysis.

- Transform the skeleton file into AST and then merge it with the

student solutions to get the student standalone solution for a

given homework.

- Compile standalone source code and run unit tests.

- Preparation of a detailed html report and a summary report in

excel per student.

Introduction

Evaluation is an essential part of education and is useful both for students who receive feedback on the

progress of their studies and for educators who can assess whether or not students have achieved their goal. In

this approach, it has been shown that most students choose the easier path to achieve the best result during

evaluation, instead of acquiring comprehensive knowledge, which would also benefit for companies. It follows

that continuous assessment of the course can be used to guide and improve students’ learning process. As

manual evaluation requires a significant effort even in the case of small groups, it is advisable to try to find ways

to automate some or all of the work. Automation is further justified by the fact that it is almost impossible to take

all aspects into account in the evaluation, and it is also very rare for two instructors to perform the assessment

based on the same criteria and arrive at the same result. Of course, the grades developed in this way will

depend heavily on the instructor conducting the assessment, which may unfairly affect many students.

Table 1. Students’ solutions and a summary of the results of the evaluation.

Homework Number of Criteria Unit Tests Duplications

Solutions CTW CTE C1 pass C2 pass C3 pass Pass all Failed 1 Failed 2 Failed 3+ Failed all L0 L2

LinkedList 315 (87%) 30 (8%) 22 (6%) 279 233 287 106 (36%) 30 49 94 14 (5%) 2 2

BST 317 (87%) 6 (2%) 1 (1%) 274 175 306 199 (63%) 26 34 57 0 (0%) 4 17

Graph 309 (85%) 40 (11%) 26 (7%) 245 230 259 38 (13%) 95 12 116 22 (8%) 6 8

HashSet 306 (85%) 39 (11%) 15 (4%) 265 270 233 182 (63%) 0 42 49 18 (6%) 104 124

Fig. 1. A model for evaluating student homework


