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Abstract - In this paper we set up a decision system theory 

model for existing heat pump installations with U-tube heat 

exchanger. Our models describe the relation and connection 

between input, output and decision variables of the whole 

system. For every “stage” of the system we show the 

expectable return and then we demonstrate the optimal return 

function. Only the system theory modeling is able to provide 

an exact definition of the various working points, besides it 

enables decision-making required to ensure optimal 

management.  

I. INTRODUCTION 

U-tube source heat pump systems are complex systems. 
Their precise energetic and economic analysis can only be 
conducted with the help of system theory modeling. 

The basics of the system theory modeling are 
demonstrated in our previous papers [3], [4], [5], [6]. In 
these studies we introduced the “basic” system theory 
schemes, the decision variables and the transformation 
equations, which describe the connection between the 
input and output variables in every stage of the model. 

 In the development of these models we refer to 
research and work by G. L. Nemhauser [1] and R. 
Bellmann [2]. 

II. DECISION SYSTEM THEORY MODEL’S OF 

HEAT PUMP SYSTEMS WITH U-TUBES 

The energetic U-tube source heat pump systems are 
complex, consisting of numerous components, each 
influencing the system’s operation. 

We are only able to determine the optimal operation of 
such complex systems and optimal costs of their 
installation, if we decompose the system to several stages 
and we define the output accordingly.  While describing 
the decision model we decompose the entire system to a 
number of sub-systems – stages -; then for certain stages 
we define input, output and decision variables together 
with transformation correlations, describing the 
relationship between inputs and outputs.   

In both of the models we consider consumer’s heat 
demand as basis. In existing systems we are looking for 
those operation conditions, which by certain installation 
conditions, in case of lower heat demand than the sizing 
by which parameters can the system’s electricity use be 
minimized. Provided that we deal with systems under 
design or installation we have to inquire from what kind 
of elements (accessible on the market) we have to 

construct our system to achieve high COP value so we can 
minimize the investment and operation costs.  

We performed this task by recursive function equations 
and optimization theory by Bellman. We decomposed 
both types of systems to stages, set certain variables and 
by stages we defined the optimization objective function.  

The optimization theory is as follows. We perform 
optimization from back to the front base on the backward 
model. We define the optimum of the first stage, which is 
in our case the stage of consumers. Then we move to the 
next stage, which comes after the consumers’ stage. 
Hereby we define the optimum of the stage and we add to 
this value the optimum of the previous stage. We continue 
this process until we reach the end of the system.  

Optimization decision model of the serial mechanical 
system can be described accordingly “Fig. 1”. In this 
paper we refer to input and output variables in the 
modeling of exact mechanical systems as Z, to 
transformation equations as g and result variables (costs) 
as f.   

Objective function of the system [12]: 
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Function equation of recursive optimization of the 
system [12]: 

      1M U,min  MMM
U

M ZOZfZO
m

,           (1)    (5.16) 

We take into consideration the transformational 
correlation between ZM+1 and ZM state variables (input and 
output), which can be described as 

 MMMM UZgZ ,1  .                   (2) 

If we substitute this to the function equation (1) it is 
only the function of the stage’s ZM input’s as parameter, 
and of UM decision variable (3). 
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Figure 1. White box model of serial decision system [7] 

With the appropriate choice of UM decision variable in 
the function of ZM decision variable we have the optimum 
of the partial system containing M, M+1,…, N-1 stages, 
that is the optimal cost of UM,opt, UM+1,opt, …UN-1,opt  

optimal decisions. This optimization is called dynamic, 
backward recursive optimization.  

In the first phase of optimization we define the ON-

1((UN-1, ZN-1), ZN) function as follows 
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As a second step 
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but it is observable that  
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By this optimization of the decision variable ON-2(ZN-2) 
for UN-2 we can define optimal value of UN-2, which then 
we substitute to the function ON-2(ZM-2, UN-2). Hence, we 
get to know the optimal (maximal or minimal) costs of the 
studied stages in the function of ZN-2 inputs. 

Most frequently the inquiry of the optimal value of the 
decision variable is done numerically, taking into 
consideration the discrete character of cost functions and 
variables.  

We discretize the possible value aggregation of the 
actual status variable – for example ZM – , and for each 
exact value we search for the UM(ZM) value of decision 
variable, resulting in optimal minimal value O(ZM), which 
we store. 

III. DECISION SYSTEM THEORY MODEL OF OPERATING 

HEAT PUMP SYSTEMS WITH U-TUBE CONSTALLATION  
When describing to the optimization of an operating 

system, we refer to the search of those operating 
parameters of an installed and operating system – 
considering heat demand of the consumer - , by which the 
operating costs of the system are minimal. For this we 
have to know precisely the type and size of the elements 
in the system and the demand of the consumer. We 
demonstrate the system theory scheme of an operating 
system in “Fig. 2”.  

Decision variables determining the operation during 
optimization of an operating system:  

 By U-tube heat source: mass flow of primer liquid  

(
pm ), temperature of primer liquid (forward flow) 

upcoming from U-tube (Tpe); 

 By evaporator: mass flow ( hm ) of refrigerant applied 

at cycle; 

 By compressor: condensation temperature (Tc) and 
evaporation temperature (To); 

 By consumer: mass flow of heating water ( sm ), 

temperature of the forward heating water (Tse); 

Objective function of the decision system of heat 
pumps, demonstrated in “Fig 2” is as follows:  
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A. Optimal function by the consumer’s stage  

The consumer’s heat demand is given, which is the 
known output of the decision stage. The input of the stage 
is the circulated heating mass flow, which we consider as 
parameter. We link the optimal function of the stage to 
this parameter, which is the electric power cost of the 

heating water’s circulation. Mass flow sm of the 

circulated heating water is parameter and at the same time 
decision variable. 

 
mes

s

ses

m
RkmO



11
3

1 



























 ,                    (9) 

Whereby Rs is the coefficient of hydraulic resistance of 
the known pipe system with given geometric parameters, 

ke is the unit cost of electric power, e is the pump 

efficiency and m is the electric motor efficiency.  

The function expresses the utilized electric power 

efficiency for satisfying consumer’s demand with a given 



parameter of pump in the function of the parameter, like 

 
Figure 2. Decision system theory model of an operating heat pump 

system 

the mass flow of the circulated heating water on the 
secondary side. Provided that we set particular exact 

values of sm parameter, then correspondingly, we can 

calculate the secondary forward going and returning water 
temperature with the help of formulas (10) and (11). 
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B. The optimal function for the partial system with a 

condensator  

While in operation, new operating costs do not emerge 
by the decision stage of the condensator. Therefore,  

   sc mOTO 
121  .                 (12) 

In case of an operating system mass flow of the 
operating system on the secondary side by the stage of the 
condensator remains as parameter. Optimum of the stage 
equals with the optimum of the previous level. We do not 
perform optimization. Condensation temperature is 
determined. It is known from former stages that  
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by which 

    sconsumerc mOQTO 
121  .                (14) 

For the production of  smO 
1  we search for the lowest 

allowed (lower than nominal) circulate able heating mass 

flow sm . 

C. The optimal function for the partial system 

supplemented by compressor stage  

A new cost element enters, namely the electric power 
utilization of the compressor. In the optimization function 
we place this electric power utilization of the compressor 

next to the  smO 
21 taken from the previous decision 

stage. To the optimal function of the newly supplemented 
321 system we involve the evaporation temperature as 
parameter, given that electric power use and COP value of 
the compressor is determined by condensation and 
evaporation temperature. 
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Hereby   consumerc QTTE ,0 is the electric power 

utilization of the compressor, and its cost. The 

Tc( consumerQ ) and To determines the value of COP and the 

value of 
evapQ as well, whereby 

real

realevap

P

PQ
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



. 

The values of 
evapQ  are calculated by equations (16) and 

(17), while realP  can be calculated by equation (18). 

evapQ  equals with heat quantity extractable by U-tube. 
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D. The optimal function of the partial system 

supplemented by evaporation stage 

A new cost emerges. 
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Whereby 
evapQ  is the known value added to T0. 

Heat quantity provided by evaporator  
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The stage’s optimum is expressed by function 

),( 04321 evapQTO   in the function of evaporation 

temperature and the heat output of the evaporator. 

E. Optimal function for the partial system 

supplemented by U-tube stage  

The new cost is the electronic power use of the 
circulated fluid in the U-tube’s hydraulic system. 
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Whereby Rp is hydraulic resistance coefficient of the U-
tube’s hydraulic system, ke is the unit cost of electric 

power, e is the pump efficiency and m  is the motor 

efficiency. The function equation (21) is solved 

numerically. We set 
pm  and make T0 a known, fixed 

parameter value. Fixed to T0 tubeUevap QQ   is known as 

well. By this we are able to calculate the value of Tpv, 
which is 
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Based on differential equations (23), (24) the obtained 
values [8], [9], [10], [11] are utilized to determine the 
extractable heat capacity belonging to value Tpv and 
calculated by equation (22) to the mass flow of certain 
primary fluids. Then, we compare this heat capacity with 
the heat capacity calculated during optimization, with the 

values of 
tubeUevap QQ   heat capacity utilized in 

equation (22). Provided that the heat capacity value of the 
U-tube calculated by equations (23), (24) equals to or is 
smaller than heat capacity values utilized in equation (22) 

belonging to mass flow pm , which was applied as 

parameter, then the given 
pm  is applicable. If however, 

the calculated heat capacity is bigger, then the values 

belonging to the given 
pm fall out of the optimization.   
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IV. SUMMARY 

With the utilization of the above described decision 
system theory models heating systems with U-tube 
installation can be optimized. By calculating 
transformation equations introduced at certain stages in 
the function of decision variables we can determine input 
and output values of certain stages by given consumer’s 
heat demand.  

The decision system theory scheme demonstrated in 
“Fig. 2” can be utilized at any operating heat pump 
system, besides objective functions of the system can be 
calculated, which is the minimization of operation costs. 
In case of emerging individual need the hereby described 
decision system theory schemes can be supplemented by 
further decision stages. Nevertheless, in this case 
supplementation has to be performed according to the 
laws of system theory, and the relationships between 
certain decision stages have to be conducted accordingly. 
We described the basics of this method in our earlier 
papers [3], [4], [5], [6]. 
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