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Abstract — The task of programming concurrent systems is 
substantially more difficult than the task of programming 
sequential systems with respect to both correctness and 
efficiency. Nowadays multi core processors are common. 
The tendency in development of embedded hardware and 
processors are shifting to multi core and multiprocessor 
setups as well. This means that the problem of easy 
concurrency is an important problem for embedded systems 
as well. There are numerous solutions for the problem of 
concurrency, but not with embedded systems in mind. Due 
to the constrains of embedded hardware and use cases of 
embedded systems, specific concurrency solutions are 
required. In this paper we present a solution which is 
targeted for embedded systems and builds on existing 
concurrency algorithms and solutions. The presented 
method emphasizes on the development and design of 
concurrent software. In the design of the presented method 
human factor was taken into consideration as the major 
influential fact in the successful development of concurrent 
applications.  

Keywords – concurrent systems, embedded systems, parallel 
algorithms 

I. INTRODUCTION 
Concurrent computing is the concurrent (simultaneous) 

execution of multiple interacting computational tasks. 
These tasks may be implemented as separate programs, or 
as a set of processes or threads created by a single 
program. The tasks may also be executing on a single 
processor, several processors in close proximity, or 
distributed across a network. Concurrent computing is 
related to parallel computing, but focuses more on the 
interactions between tasks. Correct sequencing of the 
interactions or communications between different tasks, 
and the coordination of access to resources that are shared 
between tasks, are key concerns during the design of 
concurrent computing systems. In some concurrent 
computing systems communication between the 
concurrent components is hidden from the programmer, 
while in others it must be handled explicitly. Explicit 
communication can be divided into two classes: 

 

A. Shared memory communication 
Concurrent components communicate by altering the 

contents of shared memory location. This style of 
concurrent programming usually requires the application 
of some form of locking (e.g., mutexes (meaning(s) 
mutual exclusion), semaphores, or monitors) to coordinate 
between threads. Shared memory communication can be 
achieved with the use of Software Transactional Memory 
(STM) [1][2][3]. Software Transactional Memory (STM) 
is an abstraction for concurrent communication 
mechanism analogous to database transactions for 
controlling access to shared memory. The main benefits of 
STM are composability and modularity. That is, by using 
STM one can write concurrent abstractions that can be 
easily composed with any other abstraction built using 
STM, without exposing the details of how the abstraction 
ensures safety. 

 
B. Message Passing Communication 
Concurrent components communicate by exchanging 

messages. The exchange of messages may be carried out 
asynchronously (sometimes referred to as "send and 
pray"), or one may use a rendezvous style in which the 
sender blocks until the message is received. Message-
passing concurrency tends to be far easier to reason about 
than shared-memory concurrency, and is typically 
considered a more robust, although slower, form of 
concurrent programming. The most basic feature of 
concurrent programming is illustrated in Figure 1. The 
numbered nodes present instructions that need to be 
performed and as seen in the figure certain nodes must be 
executed simultaneously. Since most of the time 
intermediate results from the node operations are part of 
the same calculus this presents great challenge for 
practical systems. A wide variety of mathematical theories 
for understanding and analyzing message-passing systems 
are available, including the Actor model [4]. In computer 
science, the Actor model is a mathematical model of 
concurrent computation that treats "actors" as the 
universal primitives of concurrent digital computation: in 
response to a message that it receives, an actor can make 
local decisions, create more actors, send more messages, 



 
Figure 1.   The data flow of a software 

and determine how to respond to the next message 
received. Figure 1 demonstrates the most basic but 
essential problem in the concurrent programming. Each 
number represents one process or one operation to be 
performed. The main goal is not to find the resource for 
parallel computing but to find the way to pass 
intermediate results between the numbered nodes.   
C. Advantages 

Increased application throughput - the number of tasks 
done in certain time period will increase. High 
responsiveness for input/output - input/output intensive 
applications mostly wait for input or output operations to 
complete. Concurrent programming allows the time that 
would be spent waiting to be used for another task. It can 
be stated that there are more appropriate program 
structures - some problems and problem domains are well-
suited to representation as concurrent tasks or processes. 

II. COMMUNICATION 
In case of distributed systems the performance of 

parallelization largely depends on the performance of the 
communication between the peers of the system. Two 
peers communicate by sending data to each other, 
therefore the performance of the peers depends on the 
processing of the data sent and received. The 
communication data contains the application data as well 
as the transfer layer data. It is important for the transfer 
layer to operate with small overhead and provide fast 
processing. Embedded systems have specific 
requirements. It is important that the communication 
meets these requirements. 

The design of the presented method is focused around 
the possibility to support and execute high level 
optimizations and abstractions on the whole program. The 
graph-based software layout of the method provides the 

possibility to execute graph algorithms on the software 
architecture itself. The graph algorithms operate on the 
software’s logical graph not the execution graph. This 
provides the possibility for higher level optimizations 
(super optimization). The architecture is designed to be 
easily modelable with a domain specific language. This 
domain specific language eases the development of the 
software, but its primary purpose is to provide information 
for higher level optimizations. It can be viewed as the 
logical description, documentation of the software. Based 
on the description language it is possible to generate the 
low level execution of the software, this means that it is 
not necessary to work at a low level during the 
development of the software. The development is 
concentrated around the logic of the application. It focuses 
on what is to be achieved instead of the small steps that 
need to be taken in order to get there. 

III. REALIZATION IN EMBEDDED SYSTEMS 
The architecture of modern embedded systems is based 

on multi-core or multi-processor setups. This makes 
concurrent computing an important problem in the case of 
these systems, as well. The existing algorithms and 
solutions for concurrency were not designed for embedded 
systems with resource constraints. In the case of real-time 
embedded systems it is necessary to meet time and 
resource constraints. It is important to create algorithms 
which prioritize these requirements. Also, it is vital to take 
human factor into consideration and simplify the 
development of concurrent applications as much as 
possible and help the transition from the sequential world 
to the parallel world. It is also important to have the 
possibility to trace and verify the created concurrent 
applications. The traditional methods used for parallel 
programming are not suitable for embedded systems 
because of the possibility of dead-locks. Dead-locks pose 
a serious problem for embedded systems [5], because they 
can cause huge losses. The methods presented in [6] 
(Actor model and STM), which do not have dead-locks, 
have increased memory and processing requirements, this 
also means that achieving real-time execution becomes 
harder due to the use of garbage collection. Using these 
methods and taking into account the requirements of 
embedded systems one can create a method which is 
easier to use than low-level threading and the resource 
requirements are negligible. In the development of 
concurrent software the primary affecting factor is not the 
method used for parallelization, but the possibility to 
parallelize the algorithms and the software itself. To create 
an efficient method for parallel programming, it is 
important to ease the process of parallelizing software and 
algorithms. To achieve this, the used method must force 
the user to a correct, concurrent approach of developing 
software. This has its drawbacks as well, since the user 
has to follow the rules set by the method. The presented 
method has a steep learning curve, due to its requirements 
toward its usage (software architecture, algorithm 
implementations, data structures, resource management). 
On the other hand, these strict rules provide advantages to 
the users as well, both in correctness of the application 
and the speed of development. The created applications 
can be checked by verification algorithms and the 
integration of parts, created by other users is provided by 
the method itself. The requirements of the method provide 
a solid base for the users. In the case of sequential 



applications the development, optimization and 
management is easier than in the case of concurrent 
applications. Imperative applications when executed have 
a state. This state can be viewed as the context of the 
application. The results produced by imperative 
applications are context-dependent. Imperative 
applications can produce different results for the same 
input because of different contexts. Sequential 
applications execute one action at a given moment with a 
given context. In the case of concurrent applications, at a 
given moment, one or more actions are executed with in 
one or more contexts, where the contexts may affect each 
other. Concurrent applications can be decomposed into 
sequential applications which communicate with each 
other through their input, but their contexts are 
independent. This is the simplest and cleanest form of 
concurrent programming. 

IV. MAIN PROBLEMS 
Embedded systems are designed to execute specific 

tasks in a specific field. The tasks can range from 
processing to peripheral control. In the case of peripheral 
control, concurrent execution is not as important, in most 
cases the use of event-driven asynchronous execution or 
collective IO is a better solution [7]. In the case of data- 
and signal processing systems the parallelization of 
processing tasks and algorithms is important. It provides a 
significant advantage in scaling and increasing processing 
capabilities of the system. The importance of peripheral 
and resource management is present in data processing 
systems as well. The processing of the data and peripheral 
management needs to be synchronized. If we fail to 
synchronize the data acquisition with data processing the 
processing will be blocked until the necessary data are 
acquired, this means that the available resources are not 
being used effectively. The idea of the presented method 
is to separate the execution, data management and 
resource handling parts of the application. The presented 
method emphasizes on data processing and is made up of 
separate modules. Every module has a specific task and 
can only communicate with one other module. These 
modules are peripheral/resource management module, 
data management module and the execution module. The 
execution module is a light weight thread, it does not have 
its own stack or heap. This is a requirement due to the 
resource constrains of embedded systems. If required, the 
stack or heap can be added into the components of the 
execution thread with to the possibility of extending the 
components of the execution thread with user-defined data 
structures. The main advantage of light weight threads is 
that they have small resource requirements and fast task 
switching capabilities [8][9]. The execution module 
interacts with the data manager module which converts 
raw data to a specific data type and provides input for the 
execution module. The connection between the data 
manager and the execution module is based on the Actor 
model [10] which can be optimally implemented in this 
case, due to the restrictions put on the execution module 
which can only read and create new data (types) and 
cannot modify it. The execution module can be monolithic 
or modular. The modular composition is required for 
complex threads were processing is coupled with actions 
(IO). The execution threads can be built up from two 
kinds of components, processing and execution/action 
components. The component used in the execution 

 
 

Figure 2.  The software development process 

module is a type which for a given input type ’a’ creates a 
given type ’b’. This operation will always give the same 
result for the same input.  
The processing component is referentially transparent, 
meaning it does not support destructive actions [11]. The 
type variables ’a’ and ’b’ can have the same types. The 
action component is similar to the processing component, 
it is usable in case where one needs to support destructive 
actions. These components request the execution of 
specific actions which are received and executed by a 
transactional unit. The design of the transactional 
mechanism is based on transactions, just as in software 
transactional memory. The threads in the execution 
module are not connected to each other. It is possible to 
achieve interaction between the threads. One or more 
execution threads can be joined with the use of the reduce 
component. The reduce component iterates through the 
values of the given threads, merging them into one 
component or value. The merging algorithm is specified 
by the user, as well as the order of the merging. The 
joining of the threads follows the MapReduce model, 
where the map functions correspond to the threads and the 
reduce function corresponds to the merging algorithm 
provided by the user [12]. The method introduced in this 
paper is usable for concurrent programming in real-time 
embedded systems as well. The complexities of the 
algorithms used in the method are linear in the worst case. 
The priority of threads can be specified, this mean that the 
order of execution can be predetermined. It is possible to 
calculate the amount of time required to execute a specific 
action. This way the created systems can be deterministic. 

Threads can be separated into two parts. The two parts 
create a client server architecture, where the server is the 
data manager and the client is the actions/steps of the 
thread. The job of the server (producer) is to provide the 
client (consumer) with data. The server part sends the data 
to the client part. The server part protects the system form 
possible collisions due to concurrent access or request to 
resources. The client part has a simple design it is made up 
of processing steps and actions. 

The job of the asynchronous resource manager is to 
provide safe access to resources for the server part of the 
threads. The resource manager does not check the 
integrity of data, its only job is to provide the execution 
threads server part with raw data. Parallelization of 
software is not trivial in most cases. The method presented 
in the paper takes this fact into consideration. It is an 
important that the parallelizable and sequential parts of the 
software can be easily synchronizable. The presented view 
of software (as seen in Figure 2) is easily implementable 
into the model of the presented method. Based on the data 



flow of the software, it is possible to implement it into the 
model of the presented method for concurrency. 

V. CONCLUSION 
Concurrent programming is complex and hard to 

achieve. In most cases the parallelization of software is 
not a straightforward and easy task. The realized 
concurrent programs usually have safety and performance 
issues. For embedded systems the existing parallelization 
algorithms and solutions are not optimal due to resource 
requirements and safety issues. The goal is to realize such 
a solution for concurrent programming, which is optimal 
for embedded systems and helps and simplifies the 
development of concurrent programs. The key to 
successful development of parallel programs is in the 
realization of tools which take into consideration the 
human factors and aspects of parallel development.  

The model presented in this paper builds on the 
advantages of existing parallelization algorithms with 
human factor as its primary deciding factor. In the 
development of a concurrent applications, the used 
parallelization algorithms and solutions are important, but 
the most important factor is the developer/user itself. To 
achieve the best possible results, to achieve efficient 
software, we must concentrate on the most important 
factor of development, the human (developer).  

The presented parallelization model is best applicable if 
the problem we would like to solve is not trivially 
parallelizable, which is true for the great number of 
algorithms and software. 
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