
Realization of Concurrent Programming in
Embedded Systems

Anita Sabo*, Bojan Kuljić**, Tibor Szakáll***, Andor Sagi****

Subotica Tech, Subotica, Serbia

* saboanita@gmail.com ** bojan.kuljic@gmail.com *** szakall.tibor@gmail.com **** peva@vts.su.ac.rs

Abstract — The task of programming concurrent systems is
substantially more difficult than the task of programming
sequential systems with respect to both correctness and
efficiency. Nowadays multi core processors are common.
The tendency in development of embedded hardware and
processors are shifting to multi core and multiprocessor
setups as well. This means that the problem of easy
concurrency is an important problem for embedded systems
as well. There are numerous solutions for the problem of
concurrency, but not with embedded systems in mind. Due
to the constrains of embedded hardware and use cases of
embedded systems, specific concurrency solutions are
required. In this paper we present a solution which is
targeted for embedded systems and builds on existing
concurrency algorithms and solutions. The presented
method emphasizes on the development and design of
concurrent software. In the design of the presented method
human factor was taken into consideration as the major
influential fact in the successful development of concurrent
applications.

Keywords – concurrent systems, embedded systems, parallel
algorithms

I. INTRODUCTION
Concurrent computing is the concurrent (simultaneous)

execution of multiple interacting computational tasks.
These tasks may be implemented as separate programs, or
as a set of processes or threads created by a single
program. The tasks may also be executing on a single
processor, several processors in close proximity, or
distributed across a network. Concurrent computing is
related to parallel computing, but focuses more on the
interactions between tasks. Correct sequencing of the
interactions or communications between different tasks,
and the coordination of access to resources that are shared
between tasks, are key concerns during the design of
concurrent computing systems. In some concurrent
computing systems communication between the
concurrent components is hidden from the programmer,
while in others it must be handled explicitly. Explicit
communication can be divided into two classes:

A. Shared memory communication
Concurrent components communicate by altering the

contents of shared memory location. This style of
concurrent programming usually requires the application
of some form of locking (e.g., mutexes (meaning(s)
mutual exclusion), semaphores, or monitors) to coordinate
between threads. Shared memory communication can be
achieved with the use of Software Transactional Memory
(STM) [1][2][3]. Software Transactional Memory (STM)
is an abstraction for concurrent communication
mechanism analogous to database transactions for
controlling access to shared memory. The main benefits of
STM are composability and modularity. That is, by using
STM one can write concurrent abstractions that can be
easily composed with any other abstraction built using
STM, without exposing the details of how the abstraction
ensures safety.

B. Message Passing Communication
Concurrent components communicate by exchanging

messages. The exchange of messages may be carried out
asynchronously (sometimes referred to as "send and
pray"), or one may use a rendezvous style in which the
sender blocks until the message is received. Message-
passing concurrency tends to be far easier to reason about
than shared-memory concurrency, and is typically
considered a more robust, although slower, form of
concurrent programming. The most basic feature of
concurrent programming is illustrated in Figure 1. The
numbered nodes present instructions that need to be
performed and as seen in the figure certain nodes must be
executed simultaneously. Since most of the time
intermediate results from the node operations are part of
the same calculus this presents great challenge for
practical systems. A wide variety of mathematical theories
for understanding and analyzing message-passing systems
are available, including the Actor model [4]. In computer
science, the Actor model is a mathematical model of
concurrent computation that treats "actors" as the
universal primitives of concurrent digital computation: in
response to a message that it receives, an actor can make
local decisions, create more actors, send more messages,

Figure 1. The data flow of a software

and determine how to respond to the next message
received. Figure 1 demonstrates the most basic but
essential problem in the concurrent programming. Each
number represents one process or one operation to be
performed. The main goal is not to find the resource for
parallel computing but to find the way to pass
intermediate results between the numbered nodes.
C. Advantages

Increased application throughput - the number of tasks
done in certain time period will increase. High
responsiveness for input/output - input/output intensive
applications mostly wait for input or output operations to
complete. Concurrent programming allows the time that
would be spent waiting to be used for another task. It can
be stated that there are more appropriate program
structures - some problems and problem domains are well-
suited to representation as concurrent tasks or processes.

II. COMMUNICATION
In case of distributed systems the performance of

parallelization largely depends on the performance of the
communication between the peers of the system. Two
peers communicate by sending data to each other,
therefore the performance of the peers depends on the
processing of the data sent and received. The
communication data contains the application data as well
as the transfer layer data. It is important for the transfer
layer to operate with small overhead and provide fast
processing. Embedded systems have specific
requirements. It is important that the communication
meets these requirements.

The design of the presented method is focused around
the possibility to support and execute high level
optimizations and abstractions on the whole program. The
graph-based software layout of the method provides the

possibility to execute graph algorithms on the software
architecture itself. The graph algorithms operate on the
software’s logical graph not the execution graph. This
provides the possibility for higher level optimizations
(super optimization). The architecture is designed to be
easily modelable with a domain specific language. This
domain specific language eases the development of the
software, but its primary purpose is to provide information
for higher level optimizations. It can be viewed as the
logical description, documentation of the software. Based
on the description language it is possible to generate the
low level execution of the software, this means that it is
not necessary to work at a low level during the
development of the software. The development is
concentrated around the logic of the application. It focuses
on what is to be achieved instead of the small steps that
need to be taken in order to get there.

III. REALIZATION IN EMBEDDED SYSTEMS
The architecture of modern embedded systems is based

on multi-core or multi-processor setups. This makes
concurrent computing an important problem in the case of
these systems, as well. The existing algorithms and
solutions for concurrency were not designed for embedded
systems with resource constraints. In the case of real-time
embedded systems it is necessary to meet time and
resource constraints. It is important to create algorithms
which prioritize these requirements. Also, it is vital to take
human factor into consideration and simplify the
development of concurrent applications as much as
possible and help the transition from the sequential world
to the parallel world. It is also important to have the
possibility to trace and verify the created concurrent
applications. The traditional methods used for parallel
programming are not suitable for embedded systems
because of the possibility of dead-locks. Dead-locks pose
a serious problem for embedded systems [5], because they
can cause huge losses. The methods presented in [6]
(Actor model and STM), which do not have dead-locks,
have increased memory and processing requirements, this
also means that achieving real-time execution becomes
harder due to the use of garbage collection. Using these
methods and taking into account the requirements of
embedded systems one can create a method which is
easier to use than low-level threading and the resource
requirements are negligible. In the development of
concurrent software the primary affecting factor is not the
method used for parallelization, but the possibility to
parallelize the algorithms and the software itself. To create
an efficient method for parallel programming, it is
important to ease the process of parallelizing software and
algorithms. To achieve this, the used method must force
the user to a correct, concurrent approach of developing
software. This has its drawbacks as well, since the user
has to follow the rules set by the method. The presented
method has a steep learning curve, due to its requirements
toward its usage (software architecture, algorithm
implementations, data structures, resource management).
On the other hand, these strict rules provide advantages to
the users as well, both in correctness of the application
and the speed of development. The created applications
can be checked by verification algorithms and the
integration of parts, created by other users is provided by
the method itself. The requirements of the method provide
a solid base for the users. In the case of sequential

applications the development, optimization and
management is easier than in the case of concurrent
applications. Imperative applications when executed have
a state. This state can be viewed as the context of the
application. The results produced by imperative
applications are context-dependent. Imperative
applications can produce different results for the same
input because of different contexts. Sequential
applications execute one action at a given moment with a
given context. In the case of concurrent applications, at a
given moment, one or more actions are executed with in
one or more contexts, where the contexts may affect each
other. Concurrent applications can be decomposed into
sequential applications which communicate with each
other through their input, but their contexts are
independent. This is the simplest and cleanest form of
concurrent programming.

IV. MAIN PROBLEMS
Embedded systems are designed to execute specific

tasks in a specific field. The tasks can range from
processing to peripheral control. In the case of peripheral
control, concurrent execution is not as important, in most
cases the use of event-driven asynchronous execution or
collective IO is a better solution [7]. In the case of data-
and signal processing systems the parallelization of
processing tasks and algorithms is important. It provides a
significant advantage in scaling and increasing processing
capabilities of the system. The importance of peripheral
and resource management is present in data processing
systems as well. The processing of the data and peripheral
management needs to be synchronized. If we fail to
synchronize the data acquisition with data processing the
processing will be blocked until the necessary data are
acquired, this means that the available resources are not
being used effectively. The idea of the presented method
is to separate the execution, data management and
resource handling parts of the application. The presented
method emphasizes on data processing and is made up of
separate modules. Every module has a specific task and
can only communicate with one other module. These
modules are peripheral/resource management module,
data management module and the execution module. The
execution module is a light weight thread, it does not have
its own stack or heap. This is a requirement due to the
resource constrains of embedded systems. If required, the
stack or heap can be added into the components of the
execution thread with to the possibility of extending the
components of the execution thread with user-defined data
structures. The main advantage of light weight threads is
that they have small resource requirements and fast task
switching capabilities [8][9]. The execution module
interacts with the data manager module which converts
raw data to a specific data type and provides input for the
execution module. The connection between the data
manager and the execution module is based on the Actor
model [10] which can be optimally implemented in this
case, due to the restrictions put on the execution module
which can only read and create new data (types) and
cannot modify it. The execution module can be monolithic
or modular. The modular composition is required for
complex threads were processing is coupled with actions
(IO). The execution threads can be built up from two
kinds of components, processing and execution/action
components. The component used in the execution

Figure 2. The software development process

module is a type which for a given input type ’a’ creates a
given type ’b’. This operation will always give the same
result for the same input.
The processing component is referentially transparent,
meaning it does not support destructive actions [11]. The
type variables ’a’ and ’b’ can have the same types. The
action component is similar to the processing component,
it is usable in case where one needs to support destructive
actions. These components request the execution of
specific actions which are received and executed by a
transactional unit. The design of the transactional
mechanism is based on transactions, just as in software
transactional memory. The threads in the execution
module are not connected to each other. It is possible to
achieve interaction between the threads. One or more
execution threads can be joined with the use of the reduce
component. The reduce component iterates through the
values of the given threads, merging them into one
component or value. The merging algorithm is specified
by the user, as well as the order of the merging. The
joining of the threads follows the MapReduce model,
where the map functions correspond to the threads and the
reduce function corresponds to the merging algorithm
provided by the user [12]. The method introduced in this
paper is usable for concurrent programming in real-time
embedded systems as well. The complexities of the
algorithms used in the method are linear in the worst case.
The priority of threads can be specified, this mean that the
order of execution can be predetermined. It is possible to
calculate the amount of time required to execute a specific
action. This way the created systems can be deterministic.

Threads can be separated into two parts. The two parts
create a client server architecture, where the server is the
data manager and the client is the actions/steps of the
thread. The job of the server (producer) is to provide the
client (consumer) with data. The server part sends the data
to the client part. The server part protects the system form
possible collisions due to concurrent access or request to
resources. The client part has a simple design it is made up
of processing steps and actions.

The job of the asynchronous resource manager is to
provide safe access to resources for the server part of the
threads. The resource manager does not check the
integrity of data, its only job is to provide the execution
threads server part with raw data. Parallelization of
software is not trivial in most cases. The method presented
in the paper takes this fact into consideration. It is an
important that the parallelizable and sequential parts of the
software can be easily synchronizable. The presented view
of software (as seen in Figure 2) is easily implementable
into the model of the presented method. Based on the data

flow of the software, it is possible to implement it into the
model of the presented method for concurrency.

V. CONCLUSION
Concurrent programming is complex and hard to

achieve. In most cases the parallelization of software is
not a straightforward and easy task. The realized
concurrent programs usually have safety and performance
issues. For embedded systems the existing parallelization
algorithms and solutions are not optimal due to resource
requirements and safety issues. The goal is to realize such
a solution for concurrent programming, which is optimal
for embedded systems and helps and simplifies the
development of concurrent programs. The key to
successful development of parallel programs is in the
realization of tools which take into consideration the
human factors and aspects of parallel development.

The model presented in this paper builds on the
advantages of existing parallelization algorithms with
human factor as its primary deciding factor. In the
development of a concurrent applications, the used
parallelization algorithms and solutions are important, but
the most important factor is the developer/user itself. To
achieve the best possible results, to achieve efficient
software, we must concentrate on the most important
factor of development, the human (developer).

The presented parallelization model is best applicable if
the problem we would like to solve is not trivially
parallelizable, which is true for the great number of
algorithms and software.

REFERENCES
[1] Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice

Herlihy, “Composable memory transactions,” Proceedings of the

tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pp. 48–60, 2005.

[2] Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton

Jones, Satnam Singh, “Lock -Free Data Structures using STMs in
Haskell,” Functional and Logic Programming,pp.65–80, 2006.

[3] Tim Harris and Simon Peyton Jones, “Transactional memory with
data invariants,” ACM SIGPLAN Workshop on Transactional
Computing, 2006.

[4] Paul Baran, “On Distributed Communications Networks,” IEEE
Transactions on Communications Systems, vol. 12, issue 1., pp 1-
9, 1964.

[5] César Sanchez, “Deadlock Avoidance for Distributed Real-Time
and Embedded”, Dissertation, Department of Computer Science of
Stanford University, 2007 May.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “MTIO. A
multithreaded parallel I/O system,” Parallel Processing
Symposium,. Proceedings, 11th International, pp. 368-373, 1997.

[7] Girija J. Narlikar, Guy E. Blelloch, “Space-efficient scheduling of
nested parallelism,” ACM Transactions on Programming
Languages and Systems, pp. 138-173, 1999.

[8] Girija J. Narlikar, Guy E. Blelloch, “Space-efficient
implementation of nested parallelism,” Proceedings of the Sixth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 1997.

[9] Bondavalli, A.; Simoncini, L., “Functional paradigm for designing
dependable large-scale parallel computing systems,” Autonomous
Decentralized Systems, 1993. Proceedings. ISADS 93,
International Symposium on Volume, Issue, 1993, pp. 108 – 114.

[10] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” OSDI'04: Sixth Symposium
on Operating System Design and Implementation, 2004.

[11] Gene Amdahl, “Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities,” AFIPS
Conference Proceedings, (30), pp. 483-485, 1967.

[12] Rodgers, David P., “Improvements in multiprocessor system
design,” ACM SIGARCH Computer Architecture News archive
Volume 13, Issue 3, pp. 225-231, 1985

