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Abstract: The chemical process considered serves as an appropriate paradigm of 
multivariable dynamic systems of strong non-linear coupling in the control of which the 
state propagation of various internal degrees of freedom can neither be measured nor 
directly controlled. The desired output is a single real, nonlinear function of these 
quantities. In the present example only a single input variable is used for control purposes. 
In the paper quantitative model of the process is presented. For controlling this process 
various approaches were applied: genetic programming for the identification of the 
process, an ARMAX-type floating basis vector approach in the quasi-stationary limit, and 
fuzzy-type adaptive control with fixed and with variable speed in which the adaptation rule 
was determined on qualitative considerations. In the present approach the adaptation rule 
is determined in a sophisticated manner, on the basis of a modified version of the 
renormalization transformation, in which the system is observed real time. The quality of 
the control is investigated via simulation from the points of view of its robustness with 
respect to setting its free parameters, and sensitivity to the measurement noises. It is 
concluded that at the time-scale of about 0.067 s sampling time the ‘dynamics’ of the 
controlled process can well be traced, and on the basis of a simple planning method quite 
accurate dynamic control can be achieved. 

1 Introduction 

An important class of physical systems’ control is the set of dynamic processes in 
which some deterministic response to an external input is expected. This is 
typically relevant, for instance, in the realm of chemical processes that correspond 
to the state propagation of a multivariable system in which only certain degrees of 
freedom are directly observed and controlled, while the other ones behave 
according to the internal dynamics of the system. 

In general for such systems discrete time models can be formulated in the form of 
difference equations with an external input that usually is known quantity 
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(Autoregressive Moving Average Model with eXternal input - ARMAX) [1]. In 
more sophisticated models as in the so-called Takagi-Sugeno fuzzy models the 
consequent parts are expressed by analytical expressions similar to that of an 
ARMAX model, and they use some linear combinations of such rules in which the 
coefficients depend on the antecedents. With the help of such Takagi-Sugeno 
fuzzy IF-THEN rules sufficient conditions to check the stability of fuzzy control 
systems are now available e.g. [2]. As alternative control approaches Neural 
Networks can be mentioned that in general are useful means of developing 
nonlinear models. A particular case of such applications is when the model itself 
consists of certain nonlinear mapping, for instance in the linearization of the 
nonlinear characteristics of various sensors [3]. Neuro-fuzzy systems provide the 
fuzzy systems with the possibility of automatic tuning by using Neural Network 
(NN) as a tool. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a cross 
between an artificial neural network and a Fuzzy Inference System (FIS) [2, 4, 5, 
6]. The adaptive network can be a multi-layer feed-forward network in which each 
node (neuron) performs a particular function on incoming signals. Radial Basis 
Function Networks (RBFNs) provide an attractive alternative to the standard 
Feedforward Networks using backpropagation learning technique [7]. The linear 
weights associated with the output layer can be treated separately from the hidden 
layer’s neurons. In fact the nodes of a RBFN represent ‘fuzzified’ or ‘blurred’ 
regions which correspond to the well defined antecedent sets of a fuzzy controller. 
In many cases development of the whole model is a complicated task especially 
when the ‘antecedent’ part is strongly nonlinear multivariable function of the 
input. Evolutionary methods as e.g. the Particle Swarm Optimization that realizes 
stochastic random search in a multi-dimensional optimization space [8, 9] may be 
combined with them. In the case of certain problem classes similarity relations can 
also be observed and utilized to simplify the design process [10]. 

A significant common feature of the above approaches is that they try to develop a 
‘complete’ and ‘permanent’ soft computing based model of the system to be 
controlled. This naturally makes the question arise whether it is always reasonable 
to try to identify a ‘complete’ and ‘permanent’ model especially in practical 
situations in which no full information is available for the process via real-time 
observation. As a plausible alternative simple adaptive controllers can be 
imagined that do not wish to create a ‘complete, permanent’ model. Instead of that 
a more or less temporal model can be constructed that establishes/identifies a 
mapping between the known excitation and the observed response of the 
controlled system. This model cannot be ‘complete’, because this relationship may 
depend on the exact physical state of the system the unobserved variables of 
which also vary in time. Furthermore, the observed response may belong to the 
combination of the ‘known’ and the ‘unknown’ parts of the physical actions 
exciting the system. On this reason the mapping cannot be permanent, and needs 
continuous updating. In the past few years at the Budapest Tech two variants of 
this simple approach were elaborated and extensively investigated via simulation 
results. One of them is based on a lucid geometric interpretation of the ARMAX-
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type approaches using floating system of basis vectors for describing the 
controlled system [11], the other one uses a modification of the renormalization 
transformation extensively used in various fields of physics (e.g. [12]). Though the 
convergence of the method in [12] can be guaranteed for a quite wide class of 
physical systems (e.g. for Classical Mechanical Systems), for this particular 
chemical reaction it cannot be applied. This method later was extended to an even 
wider class of physical systems in [13], in which a particular case, the control of 
an indirectly driven axis of a mechanical system was considered as an application 
paradigm. A comparative analysis of the operation of these different methods was 
given in connection with the control of a Classical Mechanical System in [14]. 

In the present paper the more sophisticated, extended method is applied for the 
control of a chemical process, namely to the free-radical polymerization of 
methyl-metachrylate with Azobis (isobutyro-nitrile) as an initiator and toluene as a 
solvent taking place in a Jacketed Continuous Stirred Tank Reactor (JCSTR). The 
mathematical model of this process was taken from [15]. In his Doctoral Thesis J. 
Madár applied a sophisticated approach based on Genetic Programming (GP) for 
identifying this reaction [16]. The method of [11] was already successfully applied 
for the control of this process in its quasi-stationary limit in [17]. On the basis of a 
detailed dynamic analysis it was observed that for efficient adaptive control of this 
system introduction of a single adaptive parameter is satisfactory for the tuning of 
which simple rules can be established. In this manner a dynamic control applied in 
a finer time scale than that of [11] became available with fixed tuning rate in [18], 
and in a more developed version with varying tuning rate in [19]. On the basis of 
these solutions formally perfect fuzzy controllers could be developed that operates 
on the basis of the following principle: the greater the control error is the higher 
speed of adaptation is needed. 

Instead of applying some fuzzy rules, the approach in the present paper tries to 
exactly establish the parameter tuning on the basis of the observation that the 
conditions needed for the convergence of the extended modification of the 
renormalization transformation are valid in the case of this chemical reaction. In 
the sequel the control method is described in general then the quality of the control 
is investigated via simulation from the points of view of its robustness with 
respect to setting its free parameters, and sensitivity to the measurement noises. 

2 The Proposed Control Approach 

The forthcoming considerations pertain to physical systems for which the 
controller tries to obtain a desired response xd by applying an imprecise and 
incomplete model to calculate the estimated necessary excitation e=ϕ(xd) that 
according to the actual dynamics of the system results in the realized response  
xr=ψ(ϕ(xd))≡f(xd). It is supposed that the desired response is known, the realized 
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response is measurable, and though the exact form of f(xd) is not known at least its 
increasing or decreasing nature can be deduced from the physics of the system to 
be controlled. In the ideal situation the realized response is equal to the desired 
one that corresponds to finding the fixed point of f as f(xd)=xd. 
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Figure 1 

Possible convergence of the Modified Renormaliaztion Transformation based algorithm 

As is well known the Renormalization Transformation can transform a function 
f(x) by a scalar parameter γ as fγ(x)≡γ-1f(γx) that transforms the fixed point f(x)=x 
since if z=fγ(z)≡γ-1f(γz) then f(γz)=γz=x. It was plausible to try to use this 
transformation for the adaptive control that can also be formulated as a fixed point 
problem. However, due to the fact that in the control just xd is needed as the 
output, the modified algorithm defined as 

( ) dd
nnn xxsssfs =−− 121 ...  (1) 

was introduced in [20]. As it qualitatively is illustrated in Fig. 1 for monotone 
increasing system this series can be properly convergent (sn→1) depending on 
how the solution of the f(sxd)=xd equation is situated in the system of coordinates 
of the appropriate figure. (Divergent solutions can also be constructed). For 
monotone decreasing SISO systems it was a plausible idea to extend the above 
given transformation by a parameter ζ that can either be positive or negative, and 
that for the special case of ζ=0 corresponds to the original transformation [Fig. 2]. 

( ) ( ) ( )( ) 0 ,  , 1111 >=−+= −−−− ζζ nnn
d

nnnn xsxxxfxfxfs  (2) 
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Figure 2 

Proper convergence of the Extended Modified Renormaliaztion Transformation 

To give a satisfactory condition for the convergence of the proposed method 
consider a flat differentiable function g(x), for which the following estimations can 
be done according to which if the derivative of g is small enough in a region it 
realizes a contractive mapping. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) abKdttgagbgdttgagbgKxg
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For a contractive mapping the xn=g(xn-1) series is a Cauchy series since  
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In a complete metric space that converges to a well defined value u that must be 
the fixed point u=g(u) since 
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The series defined in (2) corresponds to seeking the solution of the following fixed 
point problem in which gζ(x) has to be contractive: 
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In the above expression parameter ζ corresponds to the ‘multiplicative’ factor. In 
order to obtain more ‘treatable’ behavior when the fixed point is zero, it is 
expedient to introduce a ‘shift’ parameter D in the formula determining the 
multiplication factor. If f(x)→0 then f(x)+D→D and the division in (6) will not 
become critical: 

( ) ( ) ( ) [ ]( )
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As it is intuitively shown in Fig. 2, in many cases this extended iteration can be 
convergent. In the sequel it will be shown that in the case of the polymerization 
process just the situation qualitatively described in Fig. 2 prevails. Therefore 
proper designing of the control consists in roughly determining some values for 
the two parameter ζ and D. Robustness of the control with respect of these 
parameters means that no exact setting is needed for them. Their actual setting 
concerns the quality of the tracking of the control but does not influence the fact of 
the convergence. 

3 The Model of the Polymerization Process 

According to [15] the model of the polymerization process is given by the set of 
equations as: 
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in which the state variables 0<x1, …, x4 denote dimensionless concentrations of 
various chemical components taking part in the reaction. For our purposes the 
really interesting variables are x1 i.e. the monomer concentration, and the output of 
the system, that is the number-average molecular weight denoted by y. The 
process input, that is the control signal, 0<u is the dimensionless volumetric flow 
rate of the initiator. It is worth noting that though certain negative values for u 
may have physical meaning (i.e. a kind of subtraction of the initiator from the 
system), its practically realizable values are only non-negative numbers. The 
constants in (8) have the following numerical values: A=10, B=6, C=2.4568, 
D=80, E=10.1022, F=0.024121, G=0.112191, H=10, I=245.978, and J=10. It was 
easily shown that for a constant process input u (8) yields a stationary solution in 
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which the time-derivatives of the state variables are equal to zero [17]. In the same 
paper it was also shown via perturbation calculation that these stationary solutions 
are stable with respect to small perturbations. Detailed analysis in [19] revealed 
that the second time-derivative of the process output y depends on the system’s 
state and the process input in a very special form as 

( ) ( ) ( )xxx buauy
~~, +=  (9) 

That is very similar to the behaviour of the Classical Mechanical Systems with the 
exception that the system’s inertia a(x) is not constant but strongly varies with the 
state x. However, particular model calculations showed that even for abrupt jumps 
in u this inertia a~  remains negative number, and the additional term b

~
 that is 

similar to a presence of some external force is positive. Therefore if the excitation 
of the system is identified with the process control input u, the response 
corresponds to d2y/dt2, and just the situation outlined in Fig. 2 occurs in the 
control. Fig. 3 revelas illustrative details of the behavior of y(t) for a drastic jump 
of u from 6×10-3 to 1.5×10-2. The simulation results presented in the sequel belong 
to a controller rougly designed on the numerical resulst presented in Fig. 3. 

 
Figure 3 

The reaction of the system starting from an initally stationary state belonging to u=6×10-3 for its abrupt 

jump to u=1.5×10-2: the variation of y(t) and its phase space (1st row), and that of a~  and b
~

. 
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4 Simulation Results 

In the forthcoming simulation examples δt=0.067 s sampling (cycle) time was 
supposed for the controller, while the numerical calculation of the transients 
within the system was calculated with δtint=1 ms step length. For the process 
output the following ‘kinematic trajectory tracking’ was prescribed: 

( ) ( )yyPyyDyy NNND −+−+=
~~ . (10) 

 

 
Figure 4 

The ‘trajectory’ [1st row] and ‘phase trajectory’ [2nd row] tracking of the non-adaptive [left column], 
and the adaptive [right column] control. 

in which the indices ‘D’ and ‘N’ refer to the ‘desired’ and the ‘nominal’ values, 
respectively, exp/2~ TD ≈ , and DP ~8.05.0~

= . This choice corresponds to two 

slightly different time-constants of error relaxation without oscillation of the time 
constant about Texp. In order to realize (10) the rough initial model given in (9) 
was used with 6

mod 106~ ×−=a  and 5
mod 10

~
=b  constant values. The control 

parameters were as follows ζ=0.08, and mod
~
bD =  as defined in (7). Fig. 4 reveals 

that switching on the adaptivity at about 15 s from starting the control process the 
control becomes quite accurate in both the trajectory and the phase-trajectory 
tracking sense. In Fig. 5 the adaptive factor s(t) and the process control u(t) are 
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described for the same parameter setting for a hypothetically noiseless and a 
hypothetically noisy case regarding the measurement of d2y/dt2. According to the 
3rd row of the figure the supposed measurement noise was quite considerable in 
comparison with the actual values of of d2y/dt2. In spite of that the quality of the 
adaptive control remained quite good that testifies the robustness of the propesed 
method. 

 

 

 
Figure 5 

The adaptive factor s [1st row] and the control input u [2nd row] vs. time without measurement noise in 
d2y/dt2 [left column], and with evenly distributed random measurement noise restricted into the  

[-103,+103] interval [in the non-adaptive initial part of the control s(t) is only calculated but used]. The 
desired and the actual values of d2y/dt2 are given in the 3rd row. 
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Setting the control parameters used in the above simulations happened 
‘experimentally’ by running several calculations numerically. 

 Regarding the proper value of ζ for the same mod
~
bD =  shifting parameter 

various values were investigated according to Fig. 6 ζ=0.09 seems to be an 
optimal value at which the adaptation works quite quickly. On the basis of simple 
considerations (7) can result in monotone and in fluctuating convergence 
depending on the values of ζ and D. A plausible expalantion is that the 
contractivity of the mapping in (7) depends on ζ. For its small values ζ≤≈0.09 we 
have monotone convergence. At ζ≥0.09 the mappimg still remans contractive but 
becomes fluctuatuing that can make it slower. (At higher values of ζ the 
contractivity can cease and the control algorithm may become divergent.) 

 

 
Figure 6 

The operation of the dapative control for the settings of mod
~
bD =  and ζ=0.04 [upper left], 0.06 

[upper right], 0.09 [lower left], and 0.11 [lower right]. 

It also is evident from (7) that the slope of the function gζ,D also depends on D. 
Model calculations for its various values at ζ=0.09 are given in Fig. 7. It can well 
be seen that for the variation of the state variable x in the constrol task considered 
the fixed pair of ζ=0.09 and mod

~
bD =  seems to be an approximately optimal 

setting. 
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Figure 7 

The dependence of the quality of the adaptive control on the value of the control parameter D=0.5× [1st 

row], 1.25× [2nd row], and 1.5× [3rd row] mod
~
b  at ζ=0.09: the phase trajectories [left column], and 

trajectory tracking [right column]. 

Conclusions 

On the basis of a detailed numerical dynamic analysis of a quantitative 
mathematical model of the polymerization process considered It was shown that 
the process output is negative definite function of the process input (control 
signal) during the relaxation processes between the steady states caused by sudden 
jumps (steps) in the process input. On this basis an adaptive dynamic control was 
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elaborated that used these two signals only. (The other internal degrees of freedom 
in dynamic coupling with the used ones remained hidden for the controller.) 

The present approach was based on the Extended Modification of the 
Renormalization Transformation that was elaborated for negative definite SISO 
systems. This method contains two simple control parameters. The quality of the 
control was investigated via simulation from the points of view of its robustness 
with respect to setting its free parameters, and its sensitivity to the measurement 
noises. Robustness of the control with respect of these parameters means that no 
exact setting is needed for them. Their actual setting concerns the quality of the 
tracking of the control but does not influence the fact of the convergence. 

It was concluded that at the time-scale of about 0.067 s sampling time the 
‘dynamics’ of the controlled process could well be traced, and on the basis of a 
simple planning method quite accurate dynamic control was achieved. 
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