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1 Introduction 

While trying to prove that algebraic operations with analog variables can be 
performed digitally, John von Neumann advanced in 1956 the idea of representing 
analog variables by the mean rate of random-pulse streams [1]. 

Random-pulse data appear as sequences of random binary pulses which carry 
analog information represented by the statistical mean value of the pulse sequence. 

Figure 1 shows a basic analog/random-pulse converter. The deterministic analog 
input V is mixed with an analog dither signal R uniformly distributed between 
+FS and –FS. The resulting analog random signal VR is then 1–bit quantizied and 
then sampled by a clock signal CLK to produce the random–pulse sequence VRP. 
It can be easily shown that the statistical estimation of the deterministic 
component of this VRP sequence represents a measure of the deterministic analog 
input V. 

As variables are represented by statistical averages of random-pulse streams, the 
data processing can be done by simple 1-bit arithmetic operations. 

Pursuing this idea, a variety of random-pulse processing systems were reported 
during the last 50 years, [2-9]. On parallel tracks, dither techniques have been used 
to reduce the effects of the quantization noise in instrumentation and signal 
processing, [10-16]. 
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An important limitation of the random-pulse is the relatively long time needed to 
rich an acceptable computational accuracy. However this drawback can be 
mitigated by increasing the quantization resolution of the dithered signals. The 
resulting multi-bit data representation will be referred further as the von Neumann 
stochastic data representation. 

After a short review of the basic principles of the von Neumann stochastic data 
representation, the paper presents two soft computing applications of this 
technique: neural network hardware architecture and fuzzy logic controller 
architecture developed by the author and his collaborators at the University of 
Ottawa, [6], [8], [16-18]. 

2 Von Neumann Stochastic Data Representation 

This data representation is a generalization of von Neumann’s random pulse 
representation. A more detailed discussion of this technique and its applications to 
instrumentation and neural network (NN) architectures can be found in [8]. 

2.1 Analog / Stochastic Data and Stochastic Data / Digital 
Conversions 

Stochastic data are produced by a multi-bit analog/stochastic data converter as 
shown in Figure 1. Before quantization, the analog signal V, supposed to have a 
low variation rate relatively to the sampling clock CLK rate, is mixed with an 
analog dither R uniformly distributed between +Δ/2 and +Δ/2, where Δ is the 
quantization step, shall fulfil the following statistical requirements: (i) zero mean, 
(ii) independent of the input V, and (iii) characteristic function having periodic 
zeros, [10] and [11]. 

The resulting analog signal VR is quantified with a b-bit resolution and then 
sampled by a clock CLK to produce the stochastic sequence VRD of b-bit data 
with amplitude values between k-1 and k. The ideal estimation over an infinite 
number of samples of the stochastic data sequence VRD is: 

E[VRD] = (k-1). p[(k-1.5)Δ≤ VR< (k-0.5) Δ] + k . p[(k-0.5)Δ ≤ VR< (k+0.5)Δ] 

               =  (k-1) .β + k .(1-β) = k - β (1) 

The estimation accuracy of the recovered value for V depends on the quantization 
resolution Δ, the finite number of samples that are averaged, and on the statistical 
properties of the analog dither. 
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Figure 1 

Analog/stochastic data converter 

Because of the functional similarity of a neuron and a correlator, we found useful 
to consider the following table giving relative speed performance figures for 
correlators with different quantization levels, [10]: 

Quantization levels         Relative mean square error 

2 72.23 
3 5.75 
4 2.75 
... ... 
8 1.23 
... ... 
analog 1 
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For instance, a 2-level random-pulse correlator will be 72.23 times slower than an 
ideal analog correlator calculating with the same accuracy the correlation function 
of two statistically independent Gaussian noise signals with amplitudes restricted 
within ±3σ.  Remarkably, a 3-level (2-bit) correlator will be 5.75 times slower 
than the analog correlator. 

Based on these relative performance figures we are using a 3-level generalized 
random-data representation produced by a dithered 2-bit dead-zone quantizer, 
which gives a good compromise between the speed and the circuit complexity, [8]. 

Stochastic data / digital estimates the deterministic component V of a stochastic 
data sequence by a moving average V*N  over the most recent N samples {VRDi / 
i=1,2,...N}: 

N
VRDVRDVV N

NN
0

1** −
+= −

 (2) 

The moving average algorithm eliminates the need to continuously recalculate the 
sum of the most recent N data and then divide it by N. 

32 266 500
3.2

1

1.2

x2is

x2ditis

x2RQis
4

2

dZis

dHis

dLis

MAVx2RQis

is  
Figure 2 

Analog/stochastic data and stochastic data/digital conversions (from [8]) 

Figure 2 shows a step-like analog signal x2 that is converted to a sequence of 
random data x2RQ, which is then reconverted as a moving average over N=16 
samples to produce the analog estimation MAVx2RQ. 
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2.2 Arithmetic Operations with Stochastic Data 

The arithmetic addition of m signals {xi⎥ i=1,2,...,m}represented by their b-bit 
stochastic data {Xi⎥ i=1,2,...,m} is be carried out, as shown in Figure 3, by time 
multiplexing the randomly sampled incoming random-data streams. The 
uniformly distributed random sampling removes unwanted correlations between 
sequences with similar patterns, [4]. The stochastic data output sequence Z = 
(X1+...+Xm)/m represents the resulting sum signal z =  x1 +…+ xm 
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Figure 3 
Arithmetic addition of  m stochastic data streams X1, X2,..., Xm 

The multiplication of two streams of 3-level, 2-bit, unbiased stochastic data is 
done in parallel by a low complexity combinatorial logic circuit defined by the 
following equations; 

LSBMSBMSBLSBMSB YXYXZ ⋅+⋅=  (3) 

LSBLSBMSBMSBLSB YXYXZ ⋅+⋅=  (4) 

where XMSB and YMSB are the most-significant bits, and XLSB and YLSB are the least-
significant bits of the X and Y random-data samples. 

3 Neural Network Architecture Using Stochastic 
Data Representation 

A NN hardware architecture was developed using modular arithmetic operators 
that process 3-level 2-bit stochastic data streams. 

Each synapse multiplies an incoming random data streams Xi, where i=1,2,...,m, 
by a synaptic-stored weight wij, which is adjusted during the learning phase. 
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The neuron-body integrates the DTij = Xi * wij signals from all the incoming post-
synaptic channels, as illustrated in Figure 4. In order to apply the activation 
function, the results of this integration are converted to a digital representation. A 
final digital/stochastic data conversion is then used to restore the stochastic data 
format for the output Yj of the neuron. 
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Figure 4 
Neuron body structure using stochastic data representation 

Using this stochastic data neuron, we have implemented a 30 input auto-
associative memory NN for pattern recognition applications, shown in Figure 5, 
[17]. This 30 input auto-associative memory NN is able to recognize any of the 
initially taught associations. If it receives an input P=Pq then it produces an output 

qta = , for q = 1,2,...,Q. 

The training set consists of three training patterns, which represent the digits 
{0,1,2} displayed as a 6x5 grid. Each white square is represented by a ‘-1’, and 
each black square is represented by a ‘1’. The weight matrix in this case is 

TTT PPPPPPW 332211 ++= . 
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Figure 5 
The auto-associative memory NN and the training set (from [8]) 

The auto-associative memory NN can also recognize patterns corrupted by noise: 
i.e. if the input is changed δ+= qPP  the output will still be qta = . Tests 

have shown that it is able to deal with up to 30% noise-corrupted patterns as 
illustrated in Figure 6. 

 
Figure 6 

Recovery of 30% occluded patterns by the auto-associative NN (from [8]) 

4 Fuzzy Logic Controller Architecture Using 
Stochastic Data Representation 

While there are only few fuzzy membership functions covering the input and 
output domains of a fuzzy logic controller (FLC), the overlapping of the fuzzy 
domains and their linear membership functions will eventually allow the 
achievement of the desired high-resolution I/O function between crisp input and 
output variables. 

The low-bit stochastic data representation allows us to implement digital FLC 
architectures which use fewer logic circuits than the traditional digital 
architectures providing the same high-resolution I/O function. 

4.1 FLC for Backing-up a Four Wheel Truck 

The problem, illustrated in Figure 7, is to back up a truck into a docking station 
from any initial position that has enough clearance from the docking station, [16]. 
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The 35 rule Sugeno-style FLC, Figure 8, has two input variables: the truck angle ϕ 
and the x position. The output variable is the steering angle θ. 
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Back Wheel
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y

 

Figure 7 
The parameters of the truck backing-up problem 

 
Figure 8 

The membership functions and the rule-base for the FLC (from [16]) 

 

0 4 5 15 20-4 -5 -15 -20 -50 50

x-position   

900 1000 800 600 300 00 -90 27001200 1500 1800

truck  an gle 

00 -250 -350 -450 250 350 450

LE LC CE R C R I

R B  R U  R V VE LV LU LB

N L N M N S ZE P S P M P L

ϕ 

steerin g an gle θ 

0.0 

1.0 

1.0 

0.0 

P S

N S

N M

N M

N L

N L

N L

P M P M

P M

P L P L 

N L

N L

N M

N M

N S

P S

N M

N M

N S

P S

N M 

N S  

P S  

P M 

P M 

P L 

N S  

P S  

P M 

P M 

P L 

P L 

R L

R U

R V

VE

LV

LU

LL

LE LC CE RC RI 
ϕ

x  

ZE

1 2 3 4 5 

6 7

18

31 35 34 3332

30 



Magyar Kutatók 7. Nemzetközi Szimpóziuma 
7th International Symposium of Hungarian Researchers on Computational Intelligence 

 25 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
-4 0

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

T im e   (s )

θ  [d e g ]

 

0 10 20 30 40 50 60
-50

-40

-30

-20

-10

0

10

20

30

40

Time  (s)

θ [deg]

 
Figure 9 

The FLC output θ  during docking when the input variables, ϕ and x are analog and respectively 
digitally quantizied with a 4-bit bit resolution (from [16]) 

As illustrated in Figure 9, the steering angle θ delivered at the output of a 4-bit 
purely digital FLC is too jerky for any practical application. 

The quality of the FLC output exhibits a remarkable improvement if we use a 
stochastic data representation for the same 4-bit internal resolution, Figure 10. 
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Figure 10 

The FLC output θ  during docking when the input variables, ϕ and x, are represented by 4-bit 
stochastic data (from [16]) 

 

 

 

 

 

 

 

 

 
 

Figure 11 
Truck trails for different FLC architectures: (a) analog ; (b) 4-bit purely digital, and (c) 4-bit stochastic 

data with 20-unit moving average filter (from [16]) 

Figure 11 shows comparatively the trails of a truck docking under the control of 
(a) an analog FLC, (b) a purely digital 4-bit FLC, and (c) a FLC using 4-bit 
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stochastic data and a 20-unit moving average low-pass filter at the controller's 
output. It may be interesting to note that while both trails (a) and (c) end as 
requested at the loading dock (0,0), the trail (b) does not reach the dock in the end. 

Conclusions 

Due to its relatively low hardware complexity and high internal noise immunity, 
the stochastic data processing represents an attractive alternative to the analog 
techniques for many statistical signal processing and soft computing applications. 

In order to decide on the optimal number of bits for the stochastic data 
representation one needs to solve a classical time-versus-complexity tradeoff 
depending on the specific intended application, as well as on the type and cost of 
the employed technology. 
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