
Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 307

Integrating Model Transformation Systems and
Asynchronous Cluster Tools

Gergely Mezei, Sándor Juhász, Tihamér Levendovszky
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{gmezei, sanyo, tihamer}@aut.bme.hu

Abstract: Our primary research focuses on creating an efficient model transformation
method that is based on graph transformations. We have found that there are cases when
using single computers to compute the transformation results exhibits unacceptably slow
transformations. Building clusters from computers is a well-known method to increase the
computing capability in a cost-effective way. Thus, we focus on creating a distributed
model transformation method based on cluster systems. In this case, the efficient
communication between the computers in the clusters is essential. Therefore, a cluster
management system has been chosen, which supports asynchronous, message-based
communication. Cluster systems and distributable tasks in these systems are usually based
on the C++ language, while our model transformation engine uses C#, which means that
interoperability is required between the two fields. This paper describes the integration
issues in our solution including an architectural overview and detailed information about
the interoperability method.

Keywords: Cluster systems, Model Transformation, .NET, Interoperability

1 Introduction

Nowadays model-driven software development is very popular in the field of
software design. Model-Driven Architecture (MDA) [1] is one of the most popular
model-based approaches to facilitate the synthesis of applications from domain
specific models using model transformation. Model-Integrated Computing (MIC)
[2] is another model-based solution. MIC advocates the use of domain-specific
languages with high level of abstraction and customizable notation, which helps to
increase productivity and produces shorter development cycles. Model
transformation plays an essential role in MDA, MIC and in other model-driven
solution as well. The growing popularity of modeling made it necessary to create
flexible transformation techniques, which are efficient with respect to performance
at the same time. Several transformation approaches have been created that fulfills

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 308

these requirements. One of the most popular techniques is graph transformation.
This approach handles the models as labeled, directed graphs, where the
transformation means transforming the input graph into an output graph. Graph
transformation is often based on graph rewriting that allows using the strong
mathematical background of graph rewriting. Moreover, graph rewriting rules and
the transformation itself can be modeled in a visual way using special domain
specific languages. However, the complexity of a single rewriting step is O(nk),
where n is the size of the input graph, and k is the size of the pattern defined in the
rewriting rule. This means that the efficiency of the graph transformation is
heavily affected by the size of the input graph and the size of the patterns used in
the rewriting.

Visual Modeling and Transformation System (VMTS) [3] is an n-layer
metamodeling environment supporting graph rewriting based graph
transformation. Graph transformation has been successfully applied in several
fields using VMTS, such as transforming class diagrams to database models [4],
or generating source code from visual model definitions [5]. In these cases, we
have found that existing graph transformation techniques are not efficient enough,
because of the exponential time required by the rewriting algorithm. Although
there are several algorithms that can reduce the complexity of rewriting steps in
special cases, but there does not exist any universal solution. Thus, we have
chosen to increase the computing capabilities instead of reducing the complexity
of rewriting.

The performance of a computational system is basically determined by the speed
of participating system components and by the architecture between these
components. The speed of the components is limited by the applied technology,
but using more than one instances of the same component, and organizing their
cooperation can further expand the perspectives of the processing power. This
principle is widely used at different levels of the information systems, one of the
most popular among these are cluster systems. Cluster systems are composed of
nodes (computers) more or less physically separated. Although using cluster
systems is a popular way to increase the performance, they still lack to answer
some modern requirements, because they are based on structured programming
languages extended with communication primitives.

Pyramid is a cluster management system, which allows uniting PCs with
heterogeneous operating systems into a single virtual computer [6]. The parallel
programs written for Pyramid operate as services over a general distribution layer,
and offer higher-level functions needed to produce the desired result in a
distributed way. Additionally, the communication in Pyramid is based on
asynchronous messages, which helps to reduce the communication overhead. The
presented features of Pyramid made it an ideal solution for us to improve and
distribute our model transformations.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 309

This paper presents the integration issues of VMTS model transformation system
and Pyramid cluster management tool. The paper is organized as follows. Section
2 describes the background of the paper including the introduction of VMTS and
Pyramid. Section 3 describes the architecture of the distributed model
transformation approach, and elaborates the interoperability issues used in the
solution. Finally, Section 4 concludes and exposes future work.

2 Backgrounds

2.1 Visual Modeling and Transformation System

The Visual Modeling and Transformation System (VMTS) is a highly
customizable modeling environment for creating, or editing visual languages.
VMTS also provides a model transformation framework to transform the models
to other models, or to source code. VMTS consists of several subsystems (Fig. 1).

Attributed Graph Architecture Supporting Interface (AGSI) offers a high-level
interface for the other components to reach the underlying data repository. VMTS
Presentation Framework (VPF) is solution to support creating, displaying and
editing the models in a graphical environment. Adaptive Modeler is an application
based on the VPF; it provides an easy-to-use user interface for the core functions
of VMTS. Model transformation is applied using Rewriting Engine and Visual
Model Processor. VMTS offers another built-in way to process models:
Traversing Processors are available for the traditional model interpretation in C#.
Constraints in modeling and model transformations are compiled to a validation
binary by the OCL Compiler module. This binary is used every time, when
validation is required.

Figure 1
VMTS architecture

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 310

2.2 Model Transformations in VMTS

VMTS uses a visual approach, the VMTS Control Flow language [7] to describe
the control flow of the transformation. This language defines a strict execution
order between the transformation steps. The approach uses stereotyped UML
activity diagrams as graphical notation. VMTS Control Flow can be modeled in
the same visual way as other models. The steps of the transformations specify the
operational behavior of model processing, where the main elements are graph
rewriting rules. The control flow also supports conditional branching, parameter
passing (called external causalities [8]), and hierarchical decomposition of the
transformation.

The steps of the transformations, i.e. the graph rewriting rules consist of a Left-
Hand Side (LHS) and a Right-Hand Side (RHS). Applying the rewriting rule
means to find the pattern defined in LHS in the host model (in the input model)
and replacing it with the pattern defined in RHS [8]. VMTS uses metamodel-
based rewriting, thus the LHS and the RHS are built from the metamodel
elements. It is possible that LHS and RHS use different metamodels (the input and
output model of the transformation can differ). Transformation rules can contain
OCL constraints to define additional constraints for the pattern [8].

2.3 Pyramid

The main idea of Pyramid is to build a high performance virtual computer from
desktop computers. The computers of the clusters may enter, or leave the system
any time, thus, besides the heterogeneous operating systems also the dynamic
changes in the participating computers must be supported. Pyramid was designed
to exploit the event-based programming method, which enables the service-based
use of shared remote resources.

The components in a Pyramid cluster are represented by tasks that are running
instances of different services. A service is a task prototype, containing a set of
predefined functions that can be reached through messages. A computer in the
cluster can host any number of Pyramid nodes, it can run any number of tasks. A
service describes the accepted and generated message types, their parameters and
the protocol that must be followed during its usage. The Pyramid services are
organized and stored in dynamically (run-time) loadable modules. For a service to
become available, its module must be registered.

The architecture of Pyramid system has a layered structure (Fig. 2), built up of
three main components: the host operating system, the distribution layer, and the
Pyramid tasks. The distribution layer is a thin layer responsible for location
transparency. This layer provides primitives for communication, process handling,
and graphical functions. The layer also includes a node handler task called
Pyramid Manager is running on each node, i.e. on each computer in the cluster.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 311

Figure 2
Architecture of a node in a Pyramid cluster

Pyramid Managers form the run-time part of the distribution layer; it allows
handling inter-node message passing and node administration efficiently. To make
the task and the system itself portable at source code level, the distribution layer is
based on two portable class libraries: the thread, socket and synchronization
management is provided by Common C++ [9], while the common graphical user
interface is built on wxWindows [10].

Pyramid tasks are built on the top of the distribution layer. Pyramid is based on
object-oriented technology, more precisely on Pyramid Class Library, which
contains the objects for messaging, addressing and task management. To create a
task in Pyramid, a new class must be derived from the generic base class PTask,
so the (i) message processing loop, (ii) the node Manager connectivity, (iii) the
cluster level message queue handling mechanism, (iv) the remote console, (v)
monitoring facilities and (vi) other features are simply inherited from the base
class. The new class is compiled to create a dynamically loadable assembly
module that can be loaded and used as a service at run-time by the any node
Manager. Each task should by identified by a unique service identifier.

The C++ language combined with object-oriented technology makes efficient and
easy-to-use the assembly and the extraction of inter-node messages. A series of
extraction and assembly operators are defined for the Pyramid messages, being
capable to serialize not only the predefined types, but also any custom type
derived from an empty template data type called PObject. The only rule to respect
is that the message content must be read in the same order as it was packed with
the operators.

The communication channels between the tasks are provided by the Pyramid
Managers. Since Pyramid uses an event-based message passing system,
communication means dealing with the message flow among the tasks. Every task
possesses a message queue, where the incoming messages must be placed, while
the way and the order of their processing are left to the decision of the task. Each
message of a node arrives to the node Manager, because all the tasks of a node

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 312

appear to the outer world through the same TCP port present in their identifier.
The Manager maintains an inventory of all the tasks on the nodes, thus, it is
capable of distributing the received messages to the appropriate message queues.
In Pyramid, the Manager plays an active role in the message sending operations as
well. This solution avoids blocking the sender task during the slow message
sending through the network. To avoid serialization of message handling inside
the Pyramid Manager, multiple communication threads are used to support more
incoming and outgoing messages at the same time. Despite the parallelism, the
mechanism is guaranteed to preserve the message order between any two specific
tasks.

To find the services registered on different nodes and to keep record of the
continuously changing system configuration, it is crucial to have an information
service. This role is played by the directory service in Pyramid. The directory
service keeps record of all the nodes available in the cluster and the services
registered on them. Pyramid Managers know the location of the directory service
from their configuration files; Managers forward this information to each new task
of the node at their creation. As all the cluster information is present at the very
same location known by each task, it is possible the find any service in the cluster
simply by questioning this main database. To avoid performance bottlenecks and
to increase scalability actually the directory service is a hierarchy of directory
service providers. Every Manager is configured to connect to one preferred server,
which is responsible for maintaining information of only a part of the whole
cluster. The directory servers are arranged in a tree, and are able to organize their
cooperation for information retrieval in this structure. The single point of failure
situation is eliminated by using backup directory services. The backup directory
services are present at every level of the tree, and their content is synchronized by
the corresponding primary service at predefined time intervals. If the primary
service fails, the secondary service takes its place, and acts like a primary service
until the original directory service recovers.

2.4 Interoperability

Software systems often require interoperability solutions to exchange their data.
Interoperability is especially popular if the communicating systems are based on
different software platforms. In the distributed transformation approach, presented
in this paper interoperability is needed between Pyramid and VMTS, because
Pyramid is mainly based on standard, unmanaged C++ code, while VMTS
components use managed assemblies. Managed code means here that the
Common Language Runtime (CLR) [11] controls the code execution. According
to [11] there exist three main ways to create a bridge between unmanaged C++
assemblies and managed libraries: (i) Platform Invoke, (ii) COM interop and (iii)
C++ interop.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 313

Platform Invoke is possible the most popular technique among the interoperability
solutions. It allows managed code to call unmanaged functions exported from
unmanaged dynamic link libraries (DLLs). In this case, CLR handles loading of
the DLL file and hides parameter marshalling from the programmer. Platform
Invoke was originally created to reach unmanaged code from managed code, but
the inverse direction can also be applied by using callback functions.

COM interop allows managed components to interact with COM objects trough
COM interfaces and clients. COM components must be registered for interop
before using them. Registration procedure is easy to use if the component does not
change, but it is inflexible in other cases. Additionally, COM interop means a
relatively large interoperability overhead.

C++ interop, also called implicit Platform Invoke, allows managed and
unmanaged code to co-exist in the same application. This means a higher level of
comfort when in creating the interoperability bridge between VMTS and Pyramid.
C++ interop requires the managed components to use Visual C++.

3 Integration

3.1 Distributed Model Transformations

In the case of graph transformations, parallel execution can be applied on the level
of transformation steps, and on the level of rewriting rules. Existing graph
transformations usually focus on the acceleration of the second case, more
precisely on parallel pattern matching in graphs. In VMTS, both kinds of
parallelization are supported. Although there are several differences between the
cases on the implementation level, the architecture is the similar (Fig. 3).

Figure 3
Architectural overview

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 314

Although database relations are represented in the architectural overview with two
headed arrows, they are not detailed here.

The steps of the distributed transformation are the following: (i) The input (host)
model and the transformation control flow are selected, and they are sent to Visual
Model Processor Executor (VMP Executor), which is the graph transformation
engine. (ii) VMP Executor initializes the transformation using AGSI and decides
the order of execution between the transformation steps by analyzing the
transformation control flow. The initialized data is sent to the Cluster Manager
component. (iii) The Cluster Manager component obtains information about the
available worker units (Cluster Clients) using the library service of Pyramid.
Then, Cluster Manager decides the distribution strategy according to the number
of task and the number of available workers. The description of the transformation
information (referred to as Worker Package) is sent to Cluster Clients. (iv) Cluster
Clients forward the received data to the Distributed Workers module. (v)
Distributed Worker completes the task using a distributed algorithm and AGSI to
obtain the underlying model items. (vi) The Distributed Worker sends the results
to Cluster Clients and (vii) to Cluster Manager. In this phase, according to the
initial parameters, Cluster Coordinator can send a message to other Cluster
Clients. For example, if only one possible match were requested, the other Cluster
Clients should be shut down. (viii) The result is sent to VMP Executor, which (ix)
creates the output model.

The distribution of rewriting rules works similarly, but in that case, the Worker
Package describes not a whole transformation step, but a sub-match of the
rewriting rule under execution. In this case, the Workers (Clients) try to find the
rest of the LHS pattern and apply the rewriting. This distribution is especially
useful, if all possible matches are needed. To distinguish between the two cases
the expressions, the terms Transformation Worker Package and Rewriting Worker
Package are used.

3.2 The Distribution Method

On the level of rewriting rules, the key of efficient parallelism is to find
independent matches in the host model. Starting nodes (the nodes matched first)
are chosen using statistical information of the host models. Parallelism is based on
these start nodes, since matching does not modify the host graph, and at least one
model item is different in the partial matches. A worker package is created for
each possible start node, thus, matching is applied in n parallel thread, where
means the number of possible start nodes. For example if the first node of the
pattern can be matched to three nodes in the host model, then three Rewriting
Worker Packages are created, and they can be executed in parallel.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 315

Parallelism is a bit more complex on the level of transformations, where
distribution points can be set manually, or they can be detected automatically by
analyzing the transformation control flows.

Explicit distribution points are supported by Fork and Join elements in the VMTS
Control Flow Language. These elements specify where the parallel executing
should begin and where it should terminate, i.e. where the parallel branches should
merge. Fork elements produce several Transformation Worker Packages at the
same time, one for each parallel branch. Each worker computes one of these
branches. Computing results are summarized in Join elements, where the
transformation engine waits until the result of the last branch is received.
Additionally, VMTS can simulate parallel execution on a single computer, thus, it
is recommended, but not required to use a cluster system, when running control
flows with these special kinds of elements.

Finding the parallelizable steps automatically is a more complex task. Here, the
solution is based on Parallelism theorem for metamodeling environments [12].
The detailed introduction to these theoretical results is beyond the scope of this
paper, but we point out that the examination of independency between the
transformation steps produces a dependency matrix that is used to decide which
steps can be executed in parallel.

3.3 Integration Issues

According to the architectural overview (Fig. 3) and its explanation, integration is
required in steps 2, 4, 6 and 8. This integration is based on message passing
between the modules of VMTS and Pyramid. The main difficulty of this approach
is that VMTS and Pyramid use different programming platforms as mentioned
earlier. More precisely, AGSI is based on managed code and C# language. This
means that all VMTS components have to communicate with this managed
assembly. In contrast, Pyramid can handle tasks only inherited from PTask class
and written in unmanaged C++. Thus, interoperability between VMTS and
Pyramid cannot be avoided. Using COM interop is in this case would mean a
significant communication overhead, because the wrapper upon Pyramid modules
and accessing COM components would have limitations on usable data types.
Additionally, managing COM components would also require manual
administration of the participating modules. Platform Invoke would be a better,
more flexible solution, but in this case, the unmanaged assemblies have to be
extended by explicit DllImport attributes to define entry points for the managed
code. C++ interop offers a better type safety, it is easier to follow the changes of
the unmanaged libraries (changes of Pyramid). C++ interop also makes
performance enhancements available, which are not possible with Platform
Invoke. The main advantage of C++ interop is this performance tuning possibility
that allows the programmers to reduce the interoperability overhead by writing

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 316

optimized code. Besides the advantages of C++ interop, it has some drawbacks as
well. C++ interop works only with C++ managed code, thus, model
transformation modules need to be written in managed C++, not C#. Additionally,
in case of C++ interop marshaling the data in communication is handled
implicitly. Therefore, the structure of the interface between VMTS and Pyramid
can heavily affect the performance of interop communication. According to the
presented requirements, VMP Executor and Managed Worker (Distributed
Worker) component is written in managed C++, while Cluster Manager and
Cluster Client uses unmanaged C++ code. Here component means binary
assembly (a .dll file).

The main communication steps between the components are established as follows
(the parameters of the methods are not shown, for sake of simplicity):

Figure 4

Communication between components

After selecting the host model and transformation, VMP Executor initializes the
Cluster Manager component and registers a callback function, which is used by
Cluster Manager, when it sends a message to VMP Executor. After the callback is
registered, VMP Executor starts initializing the workers. Initialization in
distributed workers mainly consists of (i) creating the managed component
(Managed Worker), and (ii) setting the transformation and host model passed by
the Init method.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 317

After initializing the workers, VMP executor starts the transformation. It traverses
the transformation control flow and creates worker packages, if required. These
packages are sent to Cluster Manager that has a package list about the currently
waiting packages.

When cluster clients have finished the initialization of their Managed Worker,
starts to get packages from Cluster Manager in an infinite loop. They do not have
information about the length of the package list in Cluster Manager, thus,
sometimes they receive empty packages only (NoPackage). If the received
package is not empty, then Cluster Client forwards it to Managed Worker that
computes the result.

To support parallel branches in the control flow, VMP Executor does not always
wait for the result of the packages, but continues the execution on different
parallel paths. The results are summarized at the end of the parallel branches.

Interoperability mainly consists of parameter passing of the transformation, or
partial match identifiers. These identifiers – originally stored in AGSI classes –
are serialized to strings when sending the data from managed to unmanaged code,
and restored by applying the reverse direction.

Conclusions

Model transformation plays an essential role in model-driven software engineering
approaches. Graph transformation is one of the most popular model
transformation methods. Existing transformation solutions cannot always compute
the results of the transformation enough fast. Since the complexity of the
transformation method cannot be reduced in general, it is a natural idea to
accelerate the transformation by increasing the computing capabilities. Cluster
systems offer a cost-efficient way to reach the required performance. To be able to
use the advantages of cluster systems, distributed model transformations are
required. The theoretical basis for this distribution has been created, but none of
the existing transformation engines has succeeded to create an implementation for
distributed transformations in cluster systems.

This paper has presented the integration experiences gained from integrating our
metamodeling and model transformation tool, VMTS and an asynchronous cluster
system, Pyramid. Although the presented solution relies on the concrete
implementation of VMTS and Pyramid, it contains general ideas, applicable in
any other similar approach. The paper has presented not only an architectural
overview of our solution, but it has also elaborated the interoperability issues and
the main communication steps between the components.

Future work focuses mainly on how to improve the detection of parallelizable
steps in the transformation control flow and in partial matches of the rewriting
rules.

G. Mezei et al.
Integrating Model Transformation Systems and Asynchronous Cluster Tools

 318

Acknowledgement

The found of ‘Mobile Innovation Centre’ has supported, in part, the activities
described in this paper.

References

[1] OMG Model Driven Architecture homepage, www.omg.org/mda/

[2] MIC Official Homepage,
http://www.isis.vanderbilt.edu/research/research.html

[3] VMTS Official Homapage, http://vmts.aut.bme.hu/

[4] L. Lengyel, T. Levendovszky, G. Mezei, H. Charaf: Model-based
Development with Strictly Controlled Model Transformation, In Proc. The
2nd International Workshop on Model-Driven Enterprise Information
Systems, MDEIS 2006, Paphos, Cyprus, pp. 39-48

[5] Forstner B., Lengyel L., Levendovszky T., Mezei G., Kelényi I., Charaf H.:
Model-based System Development for Embedded Mobile Platforms, In
Proc 13th Annual IEEE International Conference and Workshop on the
Engineering of Computer-based Systems (ECBS)

[6] Juhász S, Charaf H.: Building Clusters on Modern Desktop Operating
Systems, International Conference on Applied Informatics (section: Parallel
and Distributed Computer Networks), February 10-13, Innsbruck, Austria,
2003, Proceedings pp. 547-552

[7] L. Lengyel, T. Levendovszky, G. Mezei, H. Charaf: Control Flow Support
in Metamodel-based Model Transformation Frameworks, EUROCON
2005 International Conference on ‘Computer as a tool’, Proceedings of the
IEEE, Belgrade, Serbia and Montenegro, November 21-24, 2005, pp. 595-
598

[8] László Lengyel PhD Thesis, Budapest University of Technology and
Economics, 2006

[9] Common C++ Official Homepage, http://cplusplus.sourceforge.net

[10] wxWindows Official Homepage, http://www.wxwindows.org

[11] MSDN - Interopability,
http://msdn2.microsoft.com/en-us/library/ms235292.aspx

[12] Tihamér Levendovszky, PhD Thesis, Budapest University of Technology
and Economics, 2005

