
Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 339

Generic Software Architecture for Startup
Sequencing and Monitoring
Diagnostics/Prognostics

William Franklin
University of Maryland University College, USA
franklin2623@sbcglobal.net

Abstract: A software architecture is proposed for Diagnostics and Prognostics that makes
all the service functions service functions generic and derivable from a common
architecture. This allows all of the processing to be more automated, standardized and
validated. The proposed architecture consists of design patterns and state machines for the
control logic of smart sensors and intelligent agents that facilitate the
diagnostics/prognostics process. Object Oriented features such as polymorphism and
inheritance are utilized to establish heuristic abstractions that are generic across all
service modes of operation. These abstractions allow for the inheritance of state chart
behavior from base classes to derived classes and the customization of these state charts as
deemed appropriate for each derived class. Although this paper utilizes this architecture to
diagnostics and prognostics it is applicable to other types of services that utilize control
logic with state machines. These features are presented using class and state chart
diagrams in the Rational Rose Unified Modeling Language (UML).

1 Start Up
The StartUpMasterSequence acts as the control creator of all the processing and is
intended to manage the sequencing and concurrency in the spawning of processes.
Process spawning could be serialized as necessary to preempt memory and
resource thrashing (page faults displayed frequently) that might occur if the
processes in contention were spawned concurrently. Memory and resource
thrashing are minimized by the proper choice of the OS. Figure 1 illustrates the
Domain Diagram for this.

The StartUpMasterBuilder utilizes a Builder Design Pattern [1-3] that separates
the construction of a complex object from its representation. This particular
pattern has the following heuristics:

– Construction process allows different representations for the object
constructed.

‘Build up by parts rather than whole.’

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 340

– Algorithm for creating object should be independent of the parts that make
up the object and how they are assembled. Example – building a house
(generic).

– Creator Pattern but with low class coupling whereas Creator Pattern has
high class coupling.

– It constitutes an elaborate initializer.

Figure 1
StartUpMasterBuilder Domain Diagram

We will see more applications of the Builder Design Pattern in ensuing diagrams
and applications.

The StartUpMaster component controls the order of spawning and initializing of
all software components in the embedded control logic. This start up sequencing
addresses technological requirements imposed by the OS, ROSE RT compiler,
device drivers, as well as functional dependencies that the involved components
have on data that must be acquired at start up prior to normal operation. Figure 2
StartUp Master Composition in StartUpMasterPackage illustrates the ensuing
components that the StartUpMaster kicks off. This shows the class relationships
but the real mechanics will be detailed in the ensuing state charts of each class.

Because the spawning of processes is intensive in the manner it demands memory
and other resource allocations from the OS, the StartUpMaster manages the
sequencing and concurrency of the process spawning. The StartUpMaster
determines the concurrency of the spawning of individual processes as is required
for timeliness and efficiency in the startup of processes.

StartUpMasterSubscriber

StartUpMaster

11
subscription

StartUpMasterBuilder

1 1

theStartUpMasterSubscriber

11

theStartUpMaster

StartUpMasterPublisher

11

publication

1

theStartUpMasterPublisher

1

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 341

AComponentStarter

AComponentActivator

AProcessSpawner
StartUpMaster

itsComponentStarter

itsComponentActivator

itsProcessSpawner

ComponentStarter

ComponentActivator

StartUpInfo

11

11

11

AStartUpMaster

ConcurrentProcessSpawner

11

Figure 2

Start Up Master Composition in StartUpMasterPackage

The solution for both of these problems is to strictly control the sequencing for the
creation and declaration of subscriptions and publications across all software
components. The following sequence eliminates these two problems:

1) Establish bootstrap subscriptions and publications in the components so that
they can communicate with the StartUpMaster and so the StartUpMaster
can control the sequencing of the creation of the other subscriptions and
publications used by the components.

2) Disable message declarations for each component.

3) Sequentially create all subscriptions for each component.

4) Sequentially create all publications for each component.

5) Enable the message declarations for each component to broadcast both the
subscriptions and the publications that were created.

Depending on the OS of choice there can be significant throughput problems that
arise from components that establish and declare a large volume of subscriptions
and publications upon start up. These problems occur when a number of
components create and declare subscriptions to the same message that other
components are creating and declaring publications. A severe thrashing problem
then occurs because each component is attempting to stay synchronized to the
latest changes related to the message in common. Rather than each component
being informed once of the subscribers and publishers of a message, each
component that has already established a subscription or publication is notified

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 342

each time any other component creates and declares a subscription or publication
to the message of interest. This results in a fragmented synchronization of
subscriptions and publications between components. A more efficient solution is
to have each component establish its subscriptions and publications in a wholesale
manner that avoids possible thrashing.

Another problem that occurs, depending on the OS, is when a component
establishes a subscription for a message and a different component establishes a
publication to the same message after the first component has already declared the
subscription. In this situation, there is sometimes a 30-45 time tic interval
(dependent on OS/processor – as short as 100µs for VxWorks) that occurs because
of considerations that are contained within the overriding message framework.

Active

ReadyToStart SpawnProcesses SpawnProcessesFailure

ComponentsActivation

LimitedOperability

StartingUpComponents

NormalOperability

ShuttingDownProcesses

ReadyToStart SpawnProcesses SpawnProcessesFailure

ComponentsActivation

LimitedOperability

StartingUpComponents

NormalOperability

ShuttingDownProcesses

evSpawnProcesses tm(SpawnProcessTimeLimit)

evSpawnProcessCompleted[Success] evSpawnProcessesRecovery

evComponentsActivationComplete

[params->WasSuccessful]

[else]

evShutDown

evComponentsStartUpCompleted

evComponentsStartUpFailed

evShutDown

Figure 3

StartUpMasterSequence State Chart

The detail mechanics are presented in the state chart in Figure 3 above. The
StartUpMaster sequences to each component in turn for each of these activities.
Each activity is conducted for all components before the next activity is advanced
to for any components. This ensures that no two components are creating
subscriptions or publications, or broadcasting declarations for the same message at
the same time or in an interleaved manner. In order to collaborate with the
StartUpMaster to facilitate the sequencing required for subscriptions and
publications, components can not create and declare subscriptions and
publications in their constructors, but must instead expose operations dedicated to
these functions that can be called by the StartUpMaster via the messages that they
generate.

Figures 4 and 5 illustrate further the control mechanics in the appropriate state
charts. The underlying state transitions highlight the overall processing control. In

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 343

the ComponentStarter State Chart each state is checked for Successful completion
before transitioning to the next state or to a ComponentStartUpFailed state that
handles the appropriate failures before routing back to start over again at event
evBeginStartUp. The state transitions are handled the same way in Figure 5 for the
ComponentActivation State Chart. All of these software components involve the
system/subsystem object instantiations and reflect their functional performance in
terms of message handling.

ComponentStartUp Active

Waiting StartUpCentralMgr

StartUpNetworkMaster

OtherComponentsStartUp

ComponentsStartUpSuccessful

ComponentStartUpFailed

Waiting StartUpCentralMgr

StartUpNetworkMaster

OtherComponentsStartUp

ComponentsStartUpSuccessful

ComponentStartUpFailed

evBeginStartUp evStartUpCentralMgrCompleted

evNetworkMasterStartUpCompleted

evOtherComponentsStartUpCompleted

[params->aWasSuccessful==False]

[param->aWasSuccessful==True]

Figure 4

ComponentStarter State Chart

The StartUpMasterSequence imposes a protocol on software components that
force allocation of memory for control classes (the more memory-persistent
classes in the components) in the construction phase of the process. The memory
for all memory-persistent classes in all components is allocated prior to the
operation of any components. Before allowing any of the components to precede
to operable modes the StartUpMasterSequence determines if all components were
successful in memory allocation. Any shortage of memory is noted and constitutes
a general system fault which should be addressed at the system level. Remember
that we are using the term components to refer to the software modules that will
represent the subsystem hardware components later on.

Figure 6 Concurrent ProcessSpawner State Chart shows more graphic details of
the underlying control logic for state transitions that the StartUpMaster has kicked
off. The underlying logic is detailed in this state chart for the set of protocols that
are activated for each component development.

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 344

Figure 5
ComponentActivation State Chart

As in Figures 4 and 5 the framework is similar for handling success and failure at
each state transition. In all of the diagrams above as failures occur and remain
uncorrected a fault log can be maintained and the corresponding faults time
stamped and reported.

2 Diagnostics Approach
All of these relationships are set up specifically to provide further interfaces and
abstractions to allow for greater adaptability and applicability. The above
processing allows a DiagnosticsManagerBuilder to be spawned that builds a
singleton of the DiagnosticsManagerPkg.

ComponentActivator Active

Waiti
ng

SubscriptionsCre
ation

PublicationsCre
ation

DeclarationsBroa
dcast

ComponentsActiv
ation

ComponentsActivationSuc
cessful

ComponentActivation
Failed

Waiting SubscriptionsCreation

PublicationsCreation

DeclarationsBroadcast

ComponentsActivation

ComponentsActivationSuccessful

ComponentActivationFailed

evBeginActivation evSubscriptionsCreated

[param->aWasSuccessful==False]

[params->aWasSuccessful==True]

evPublicationsCreated

evDeclarationsBroadcasted

evComponentsActivated

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 345

Figure 6

ConcurrentProcessSpawner State Chart

The class DiagnosticsManagerManager is initiated from the
DiagnosticsManagerBuilder and Figure 7 DiagnosticsManagerManager State
Chart illustrates the control logic mechanics that the class DiagnosticsManager
inherits. The state charts featured in Figures 8 and 9 for the DiagnosticsManager
present the logic. A succession of states is tested for success/failure at conditional
connectors that further drives the data acquisition or acknowledges a failure.

In Figure 10 DiagnosticsObserver Pattern the class DiagnosticsManagerManager
sets the overall process in motion for diagnostics and prognostics trending data
acquisition and the DiagnosticsManager inherits the base features from this
DiagnosticsManagerManager class in order to provide more defined state
functionality.

In the DiagnosticsObserver Pattern the control process is established for data
acquisition and fault monitoring. The DiagnosticsObserver acts as the inherited
base class to all the control processes. This control process begins with the
DiagnosticManager’s inherited features from a DiagnosticManagerManager being
coupled to states of possible modes (NormalOperability, ServiceOperability,
ReducedOperability, DegradedOperability, and PrepareforShutDown). A
DiagnosticsManagerMode class inherits these mode features in a generic Active
state. Also, a sequence of derived classes from DiagnosticsManagerModes that act
as filters inherits these mode features for further control.

ConcurrentProcessSpawner Active

Waiting LocateExistingComponents

SpawnComponents

SpawnProcessesSuccessful

RecoverFromSpawnFailure

SpawnProcessesFailed

Waiting LocateExistingComponents

SpawnComponents

SpawnProcessesSuccessful

RecoverFromSpawnFailure

SpawnProcessesFailed

evBeginSpawn

evSpawnComponents

evSpawnComponentsComplete

setComponentsSpawned(True)

[else]

evRecoveryCompleted

[else] / setComponentsSpawned(False)

setComponentsSpawned(True)

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 346

Figure 7

DiagnosticsManagerManager State Chart

Each of these derived classes such as InitializationMode; NormalMode etc. have
their own set of specific overloaded/overridden functions that are originally
defined as pure virtual functions in the AbstractDiagnosticsManagerMode and as
virtual functions in the DiagnosticsManagerMode. These derived mode classes
then provide specific state behavior for the mode operability. Each derived mode
class controls the possible mode that the entire process can be in for the
Maintenance Pattern as shown in Figure 11 and the Maintenance Pattern can only
exist in the defined mode that each derived mode class represents.

This DiagnosticsManagerPkg provides the initial process controls to drive the
state chart in the Maintenance Pattern as shown in Figure 11.

The Observer Design Pattern [1-3] is defined as follows:

– defines a one-to-many dependency between objects such that when one
object changes state then all its dependents are notified and updated
automatically.

– Publisher sends out notifications without having to know who the observers
are. Any number observers can subscribe to receive notifications.

– provides abstract coupling and support for broadcast communication.

InputEnabled
Uninitialized

ShutDown

Initializing

ReadyToAcquireStartUpdData

AcquiringStartUpData

Operable

InitializationFailed

StartUpDataAcquisitionFailed

Initialization

Uninitialized

ShutDown

Initializing

ReadyToAcquireStartUpdData

AcquiringStartUpData

Operable

InitializationFailed

StartUpDataAcquisitionFailed

ReadyToAcquireStartUpdData

AcquiringStartUpData

Operable

evBeginStartUpDataAcquisition

evBeginShutDown

Initialization
evBeginInitialization

evInitializationCompleted / genDMMEvent(eInit, params->Success)

tm(InitializationTimeLimit)

evStartUpDataAcquisitionCompleted / genDMMEvent(eStartUpDataAcq, True)

tm(StartUpDataAcqTimeLimit)

evBeginShutDown

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 347

Figure 8
DiagnosticsManager State Chart

Figure 9

Operable State

Operable

NormalOperability

ServiceOperability ReducedOperability

DegradedOperability

PrepareShutDown

ReadyToOperate

NormalOperability

ServiceOperability ReducedOperability

DegradedOperability

PrepareShutDown

ReadyToOperate

evPrepareShutDown

evBeginServiceOperation evBeginReducedOperation

evBeginDegradedOperationevBeginNormalOperation

evInitialize

Active
Uninitialized

Initializing InitializationFailed

Initialized

ReadyToAcquireStartUpData

StartUpDataAcquisitionFailedAcquiringStartUpData

Operable

ShuttingDown

Uninitialized

Initializing InitializationFailed

Initialized

ReadyToAcquireStartUpData

StartUpDataAcquisitionFailedAcquiringStartUpData

Operable

ShuttingDown

evShutDownCompleted / itsDiagnosticsManagerOberver-
>GEN(evActivityCompleted(getDiagnosticsManagerID().eShutDown, Success)

evBeginShutDown

tm(InitializeTimeLimit)

evInitializeComplete

evBeginStartUpDataAcquisition

evStartUpDataAcquisitionCompleted

tm(DataAcqTimeLimit)

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 348

Figure 10

DiagnosticsObserver Pattern

In Figure 11 Maintenance Pattern a specialized Builder instantiates singletons for
each class and starts all the state charts for the hardware subsystems OP1 etc.
through the operation StartBehavior(). This specialized Builder is an aggregate
from the DiagnosticsBuilder-Broker (Figure 11 as continues on the right hand side
of Figure 10 – actually being inside or connected to the interface for the
DiagnosticsManagerModeInfo). A sequence of aggregations from the Builder to
the AlgorithmManager class and then to the Algorithm class is established. The
Algorithm class contains the functionality that is common to a set of subsystem
classes OP1 etc that inherit from it and each subsystem customizes this
functionality accordingly. For this functionality each subsystem can have multiple
components deployed.

Upon instantiation the behavior of the Algorithm object enters a generic state chart
as shown in Figure 12 States and Modes Design Pattern that every class such as
Main and OP1 etc. enters upon instantiation and goes into an Active state. Each
class such as OP1 etc. represents a subsystem. When StartConfig() begins on the
Diagnostics level an event evStop() or triggered operation Stop() can be
transmitted through the Diagnostics Manager interface to the AlgorithmManager
and then to the inherited state charts from the Algorithm class to send all states

ShutDownMode

DegradedMode

UnitializedMode

ReducedMode

InitializationMode

StartUpDataAcquisitionMode

NormalMode

ServiceMode

DiagnosticsManagerManager

ADiagnosticsManager

diagnosticsManagerCollection

DiagnosticsObserver

ADiagnosticsManagerMode

<<Usage>>

DiagnosticsManagerMode

DiagnosticsManager

1 1
diagnosticsManagerObserver

diagnosticsManagerModeCollection
11

activeDiagnosticsManagerMode

DiagnosticsManager
ModeInfo

1 1 delegateEngine

<<imports>>

diagnosticsManagerModeInfo

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>
<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

<<Usage>>

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 349

into a WaitToReset() state that acts as a holding state. This WaitToReset() state
allows external access by the DiagnosticsObserver to all Diagnostics and
Prognostics trending data as well as alarm logging. All the Processes can be halted
in this state while Diagnostics proceeds.

With storing the configuration data and checking the alarms. The
DiagnosticsObserver can then proceed to publish all of this data to Subscribers.
An event evReset() or triggered operation Reset() can be transmitted to have all
inherited state charts go into an initialization state that initializes all the data and
alarm settings and then becomes a holding state until another event evActivate or
triggered operation Activate() allows each process to restart. No objects are
recreated so there is no reallocation of memory on the heap. All processes are
simply suspended and restarted using the same local objects that were initially
created upon spawning from the StartUpMaster to the DiagnosticsManager. The
AlgorithmManager ensures that the processes stay in synchronization and all come
up to restart at the same time.

Each subsystem as represented by classes OP1, OP2, OP3 etc. in Figure 11 has
multiple components and Figure 12 States and Modes Design Pattern presents a
generic sequence of states for data acquisition and fault monitoring (whereby each
subsystem can be customized accordingly). Upon initial startup it is assumed that
control data and attribute values are not established or reset from prior use and the
entry point is the state Uninitialized. An event evInitialize allows the object to
transition into an Initialization state for setting the preliminary values of control
data and attributes. The event evActivate causes the object to transition into the
main state of operation Active. Inside this state may be several nested states or
modes that involve IntelligentAgents that monitor the system behavior and
performance of the control devices. Faults as they occur are recorded and
corrective action taken as necessary.
Inside Active the modes of operation are determined by the particular event. Upon
an event evStop the object transitions out of Active into a WaitingToReset
suspended buffer state to allow for data accumulation and avoid any possible data
corruption. This suspended buffer state WaitingToReset allows external access by
the DiagnosticsObserver to all Diagnostics fault and Prognostics trending data as
well as alarm logs etc.

Either an event evReset or a ten minute interval tm(600000) from a reset timer
allows the object to then transition to Initialization to begin the cycle of operation
over again as necessary. There is inherent built in flexibility in these generic state
charts for each subsystem found in the Maintenance Pattern. Each subsystem may
require specific features such as timers, other events or no need for evReset or
evStop etc. and can be defined locally. All that is required is the supporting
features defined in the specialized Builder in Figure 11. The derived mode classes
from Figure 10 that provide filtering for specific behavior could be embedded
internally as nested state modal behavior inside the Active state chart of Figure 12.

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 350

The Figure 13 Intelligent Agent Mode illustrates the possible transitions inside an
intelligent agent [4-5]. An agent is any control device that senses its environment
that it is monitoring and acts upon that environment with actuators. It is deemed
intelligent if it is capable of learning and adapting to its environment. An example
is a fuel monitor with feedback control logic or artificial intelligence that enables
it to learn and adapt to the environment it is monitoring as well as set alarms for
faults as they occur. In the Intelligent Agent Mode the intelligent agent begins in a
NoOp state until an event evMonitor allows the agent to transition into the
activeOP state to monitor the environment. The agent continues to monitor its
environment by means of a watchdog timer tm (100) that provides time intervals
of 100ms.

An event evAccumulate causes the intelligent agent to transition into the state
UpdateStatus where all diagnostics and prognostics trending data as well as
acquired alarms are all accumulated and logged accordingly. The evStop causes
the Active state to terminate as the object of interest exits out into the
WaitingToReset suspended buffer state with all of the information acquired by the
intelligent agent during this mode of operation. It is in this suspended buffer state
WaitingToReset that all diagnostics and prognostics trending data and alarms
logging is available for final accumulation and evaluation by the generic classes as
well as the DiagnosticsObserver and can be updated to the Subscriber. IEEE
Standards [6, 7] set the guidelines for how these agents should operate and report
alarms. The entire set of subsystems OP1 etc. shown in the Maintenance Pattern of
Figure 11 operate in a defined mode as dictated by Figure 10. Each subsystem
could operate in different modes by building flexibility into the Intelligent Agent
Mode of Figure 13. These design decisions need to be decided upon if all the
subsystems transition together to report faults periodically or each subsystem
transitions independently to report faults as necessary. Figures 10 and 11 illustrate
how all subsystems transition together to report faults periodically. These figures
also detail the flexibility that could also be made available in the States and Modes
Design Pattern of Figure 12.

In Figure 14 Pattern of Patterns the DiagnosticsBuilder initializes all classes and
state charts and enables the state charts. For a network centric platform this Pattern
of Patterns approach offers an ideal way of initializing data and associations
through the DiagnosticsBuilder. The CORBA ORBS that the Diagnostics Broker
could represent provide locking and unlocking of object references such as
instantiated component subsystems that are manufactured by the
DiagnosticsFactory. These instantiated objects are then utilized by the
DiagnosticsObserver in subsequent state charts and modes of operation as
depicted in Figures 10 and 11 above. The state chart behavior these objects enter
into is depicted in Figures 12 and 13.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 351

Figure 11
Maintenance Pattern

Figure 12

STATES and MODES DESIGN PATTERN

Active

IntelligentAgent1 IntelligentAgent2 IntelligentAgent3

Unitialized

Initialization

WaitingToReset

evInitialize

evActivate

evStop

IntelligentAgent1 IntelligentAgent2 IntelligentAgent3

evAgent1 evAgent2 evAgent3

evResettm(600000)

OP1

Main

OP2

Builder

AlarmQueueManager

AlgorithmManager Algorithm
theAlgorithmCollection

Broker

theAlgorithmManager

theAlarmQueueManager

theAlgorithm

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 352

IntelligentAgent

NoOP

activeOP

UpdateStatus

NoOP

activeOP

UpdateStatus evMonitor

tm(100)
evAccumulate

Figure 13

INTELLIGENT AGENT MODE

Figure 14

Pattern of Patterns

BaseDiagnosticsFactory

SpecializedDiagnosticsFactory

DiagnosticsBuilder AbstractDiagnosticsFactory

compose
configureBroker
configureAssociates
activate

DiagnosticsBroker11 11

theDiagnosticsBroker

11 11

theDiagnosticsFactory

locks & unlocks
object
reference...

low coupling
Creator; utilizes
templates

DiagnosticsPublisher

singleton -
another Design Pattern

DiagnosticsObserver

1..n

1

1..n

1

theDiagnosticsObserver

1..n

1..n

1..n

1..n

theDiagnosticsPublisher

DiagnosticsSubscriber

1..n

1..n

theDiagnosticsSubscriber

1..n

1..n

notifys what
updates required register with

DiagnosticsObserver
and recieves updates

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 353

In the above Figure the DiagnosticsBroker behaves as an elaborated proxy
between client and server; for example the ORBs in CORBA are essentially a
Broker Design Pattern [1-3]. Encapsulating both data and operations the ORBs
provide interfacial transmission across the network. The overall behavior of this
design pattern is as follows:

– decouples clients from server. Object Broker knows the location of other
objects.

– can construct a Proxy Pattern when location of the server is not known at
compile time.

– CORBA

– acting as an object reference repository:
• Dynamic – mediates all requests so no linkage between client

and server
• Static – reference address for server, client uses to connect

directly with server side proxy. Server objects register with
Broker.

– coordinates communication to transmit results & exceptions.

Another design pattern that is most utilized in the Pattern of Patterns approach is
the DiagnosticsFactory which is a Factory Design Pattern [1-3]. Its behavior is
described as:

– virtual constructor as defining an interface for object creation but lets
subclasses decide which class to instantiate. Allows more freedom of
abstraction (low coupling).

Class templates are an excellent example of this.

– manufactures an object especially when it cannot be anticipated the
class of objects to create.

– connects parallel class hierarchies. These result when a class
delegates some of

– its responsibilities to separate classes.

The DiagnosticsObserver in Figure 14 Pattern of Patterns has access to everything
in its own defined pattern domain as presented in Figure 10. This
DiagnosticsObserver Pattern is a top level diagram to Figure 11 Maintenance
Pattern which becomes interfaced through the class under usage from
DiagnosticsManagerModeInfo. For large systems with numerous subsystems this
architectural hierarchy of patterns provides an automated, standardized and
validated method of providing real time diagnostics and prognostics capability
provided that a powerful processor OS is used with large memory capacity and
speed.

W. Franklin
Generic Software Architecture for Startup Sequencing and Monitoring Diagnostics/Prognostics

 354

Conclusion

This paper presented a series of UML class and state chart diagrams that
illustrated the mechanics of having a reliable and coordinated startup sequence
with all components. In addition several state charts showed a proposed approach
for diagnostics fault handling and fault trending for prognostics. Intelligent agents
were introduced as smart control devices that could act on the environment they
are monitoring. A Diagnostics Fault handling class diagram was discussed that
showed how all components could be powered up and the respective class
relationships. A Diagnostics Maintenance pattern illustrated the use of inheritance
with an algorithm manager handling different operations OPS. Finally a Pattern of
Patterns design pattern was proposed that illustrated the superposition of all other
patterns utilized in fault handling – Factory for singletons, Builder for
accumulating classes, Broker for distributed communications using CORBA
ORBS and an Observer utilizing publication and subscription features.

References

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements
of Reusable Object-Oriented Software, Upper Saddle River, NJ: Addison
Wesley, 1995, 97-135

[2] Douglass, B.: Doing Hard Time, Developing Real-Time Systems with
UML, Objects, Frameworks and Patterns, Reading, MA: Addison Wesley
Longman, 2000, 434-465

[3] Larman C.: Applying UML and Patterns, An Introduction to Object-
Oriented Analysis Design and the Unified Process, Upper Saddle River,
NJ: Prentice Hall, 2nd Ed., 2002, 449-50

[4] Russell S., Norvig P.: Artificial Intelligence, A Modern Approach, 2nd Ed.,
Upper Saddle River, NJ: Prentice Hall 2003, Ch. 2, Intelligent Agents

[5] Fault Diagnostics/Prognostics for Equipment Reliability and Health
Maintenance, Seminar by Georgia Tech for Distance Learning and
Professional Education, May 18-21, 2004, Atlanta, Ga., Section VII PHM
and CBM

[6] IEEE P1522/D3 ‘IEEE Draft Trial Use Standard for Testability and
Diagnosability Characteristics and Metrics’, IEEE Standards Coordinating
Committee 20 on Test and Diagnosis for Electronic Systems, May 2004

[7] IEEE 1232 ‘IEEE Standard for Artificial Intelligence Exchange and
Service Tie to All Test Environments (AI-ESTATE)’, IEEE Standards
Coordinating Committee, November 20-22, 2002

