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Abstract: Model-Driven Architecture (MDA) is a widely known software design approach, 
which is intended to support model-driven engineering of software systems with 
specifications expressed as models. Using the MDA methodology, system functionality may 
first be defined as a platform-independent model (PIM) through an appropriate modeling 
language. Then the PIM may be translated into one or more platform-specific models 
(PSMs) for the actual implementation. These translations between the PIM and PSMs are 
normally performed using automated tools, such as model transformation systems, for 
example, tools compliant to the new OMG standard, named QVT 
(Queries/Views/Transformations). To facilitate flexible and powerful model 
transformations, OMG has specified the Imperative OCL language in QVT; this language 
allows using the most common programming constructs. This paper descibes the necessary 
steps of developing a compiler from lexical analysis to code generation through syntactic 
and semantic analysis. Our implementation of the Imperative OCL compiler is attached to 
the Visual Modeling and Transformation System (VMTS), which is an n-layered modeling 
environment. 
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1 Introduction 

One of the most focused fields of software engineering is modeling and a flexible 
tool support for improving the quality of the development process. Model-Driven 
Architecture (MDA) [1] is a software design approach that supports model-driven 
engineering of software systems with specifications expressed as models. Several 
UML-based modeling tools exist; the problem with these applications is that they 
do not allow the modification of their model definition. Metamodeling tools give 
the ability to edit a metamodel, which defines the rules of a model. The 
metamodel determines which types of objects are allowed during the modeling 
process, what kind of attributes or relations they can have. 
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After having customizable models based on metamodels, the need to transform a 
model into another type appeared. Generally, model transformation is the process 
of converting a model conforming to a metamodel to another model, which 
conforms to another metamodel. The first metamodel is called source metamodel, 
the second is referred to as target metamodel. The way of translating a model into 
another is not trivial, a standard named QVT [2] has been proposed by the Object 
Management Group (OMG) to handle this task. 

This paper only deals with a small part of model transformation; input model 
matching and validation of transformations are not discussed. During a 
transformation, new model elements should be created, and their attributes as well 
as their relations to each other must be set. In QVT, these tasks are handled by the 
Imperative OCL language. This paper presents a way of creating a compiler that 
transforms Imperative OCL sources into C# codes. 

The implemented compiler has been installed into the Visual Modeling and 
Transformation System (VMTS) [3], which is an n-layer metamodeling 
environment that supports editing models according to their metamodels. 
Moreover, VMTS is a UML-based model transformation system, which 
transforms models using graph-rewriting techniques. 

2 Model Transformation 

The aim of Model-Driven Architecture is to support the model based software 
design by the use of models on every stage of the system development. MDA 
offers a framework to separate the platform-independent and the platform-specific 
information used in models. The general modeling information is collected into a 
platform-independent model (PIM), which is usually expressed in UML. The 
actual implementation of an application is defined in a platform-specific model 
(PSM). A complete MDA application may contain several PSMs, according to the 
number of supported platforms. The idea of generating PSMs from PIM is 
obvious, because the platform specific information is well-known, and can be 
added to the base model automatically. This generation process is realized by 
model transformation. More generally, converting a model to another is the model 
transformation process. If the metamodels of the models equal, then the 
transformation is endogenous, otherwise it is exogenous [4]. 

2.1 QVT 

Model transformation is a critical component of MDA. Therefore, a request for 
proposal has been issued by the OMG on MOF Query/Views/Transformations [2] 
to seek a standard that is compatible with the MDA recommendation suite (UML, 
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MOF, OCL, etc.). QVT defines a standard way of transformations between 
models. The QVT specification has a hybrid declarative/imperative nature, with 
the declarative part being split into a two-level architecture. 

 
Figure 1 

Structure of QVT 

The two layers of the declarative part are the Relations and the Core metamodels 
and languages. The user-friendly Relations metamodel and language supports 
complex object pattern matching and object template creation, and implicitly 
creates trace classes and their instances to record what occurred during the 
execution of the transformation. The Core metamodel and language is defined 
using minimal extensions to the EMOF and OCL. The Core language supports 
pattern matching over a flat set of variables by checking conditions over those 
variables against a set of models. It is equally powerful to the Relations language, 
and because of its relative simplicity, its semantics can be defined more simply, 
although transformation descriptions described using the Core are therefore more 
verbose [2, 5]. 

In addition to the declarative Relations and Core languages that embody the same 
semantics at two different levels of abstraction, there are two mechanisms for 
invoking imperative implementations of transformations from Relations or Core: 
one standard language, Operational Mappings, as well as non-standard Black-box 
MOF Operation implementations. The Operational Mappings language provides 
OCL extensions with side-effects that allow a more procedural style of 
programming. The Black Box implementation for invoking transformation 
facilities expressed in other languages (XSLT, XQuery) is also an important part 
of the specification. It is especially useful for integrating existing non-QVT 
libraries. 

2.2 Imperative OCL 

The QVT Operational Mappings is an imperative language that supports the 
creation of powerful model transformations. It extends the Object Constraint 
Language (OCL) [6] with all the necessary programming constructs that are 
needed to write complex transformations in a comfortable way. It also extends the 
type hierarchy of OCL, for instance with dictionaries (hashtables). 
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OCL is a declarative language for defining rules that have to apply to UML 
models. With the use of OCL, UML has been extended, because it allows the 
creation of rules that cannot be expressed by UML structures. OCL is textual 
language that provides constraint and object query expressions. As OCL is a query 
language, it cannot modify the models, and therefore OCL is a purely side-effect-
free language. 

An assignment expression represents a value assignment to a variable or to a 
property of a model element. In case of multiple-value variables (i.e. set, ordered 
set), there are two types of assignments. The first type of assignment resets the 
value of the variable, while the second one adds the new values to the collection. 
Only the assignment signs differentiate these cases (:=, +=). An instantiation 
expression creates an instance of a class. 

The importance of these expressions is arisen by the fact that these are the 
constructs that can modify the models; thus, these expressions outrage the side-
effect-freeness of the OCL and these are the most powerful innovations in the 
Imperative OCL. 

3 Compiler Theory 

A compiler is a program that translates a program code written in the source 
language into another equivalent program code written in the target or object 
language. Typically, the source language is a programming language, such as 
C++, and the target language is the machine code for the computer being used. 

3.1 Structure of a Compiler 

The compilation process can be divided into a number of logical phases. Some of 
these phases can run simultaneously, but generally, these are executed 
consecutively. The translation of a programming language is divided into two 
main blocks: the front end and the back end. The front end analyses the source 
code to build an internal representation of the program, called the intermediate 
representation (IR). It also manages the symbol table, a data structure mapping 
each symbol in the source code to associated information such as location, type 
and scope. The back end is responsible for generating the target language code. 
These parts may be further subdivided into logical blocks. The main phases of the 
front end are lexical, syntax and semantic analyser. The back end breaks down 
into a code optimizer and a code generator [7]. 



Magyar Kutatók 7. Nemzetközi Szimpóziuma 
7th International Symposium of Hungarian Researchers on Computational Intelligence 

 397 

Source 
language

Lexical 
analysis

Syntax 
analysis

Semantic 
analysis

Intermediate 
representation

Intermediate 
code optimizer

Code 
generator

Target code 
optimizer

Target 
language

Front end

Back end  
Figure 2 

Logical structure of a compiler 

3.2 Analysis 

3.2.1 Lexical Analysis 

Lexical analysis is the first of two stages in the analysis of the structure of a source 
code. The smallest fragment of a source code is a character, but this symbol is too 
small to bear with enough information. The smallest logical entities in 
programming codes are words; more precisely these can be keywords (while, for), 
literals (‘example string’, 1000), operators (==, +=) and identifiers (variable 
names). These strings of characters are named tokens. The grammar of a 
programming language can be divided into two parts: the first one can express the 
structure of the tokens and the second part can define the main logic of the 
grammar, in which we use tokens. The prime reasons of separating the structural 
analysis into two stages are efficiency and clarity [7]. 

The pattern describing each token can always be expressed as a conventional 
regular grammar [8, 9]. Therefore, this part of the analysis can be made by finite 
state machines, which are much simpler and faster than those parsers that have to 
be used for the complete syntactical analysis. Lexical analysis can be the most 
time-consuming part of a compilation process [7]. This is primarily caused by the 
fact that it handles the whole input, therefore, the previously mentioned separation 
is essential. 

3.2.2 Syntactical Analysis 

The task of the syntactical analysis is to find a derivation for the input sentence 
from the sentence symbol. A parser uses the input stream or code and the 
production rules to creates a syntax tree, which shows the applying order of the 
production rules to generate the given source code. This parse tree is an ordered, 
directed tree. Ordered, because the sequence of the outgoing edges in a vertex is 
determined. Each inner vertex of this tree contains a non-terminal symbol (the root 
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vertex is the sentence symbol), while each leaf holds a terminal character (more 
accurately a token, because the lexical and syntax analysis is separated). If there is 
no syntax tree for the given input, then the given input was not a syntactically 
correct program, as the parse tree defines a concrete derivation for the input. 

There are two obvious ways of building up a parse tree. The first is to start with 
the sentence symbol and build down towards the terminals; the second is to start 
from the terminals and build up towards the start symbol [7, 8]. These are known 
as top-down and bottom-up parsing methods. Algorithms exist to parse any Type 
2 languages, but only a subset of grammars can be parsed efficiently. Fortunately, 
most programming languages can be analysed simply. 

A well-known analyser is the LL(k) parser. It parses the input from Left to right, 
constructs the Leftmost derivation of the sentence and looks ahead k tokens. 
Another parser is the LR(k) parser, which also analyses the input from Left to 
right, but constructs the Rightmost derivation of the sentence. LL parsers always 
start with the sentence symbol, therefore these are top-down parsers, on the other 
hand, LR parsers are bottom-up analysers, because these start from the terminals 
and go upward in the tree. It has been proved that every LL(k) language can be 
parsed with LR(k) parsers, but there exist languages which cannot be analysed by 
LL(k) parsers. This means that LR parsing method is more powerful than the LL. 
The complexity of a parser grows with the look-ahead number, thus k should be 
minimized. Most programming languages can be parsed with only one token look-
ahead, therefore LR(1) parsers are used in practice [4]. 

3.2.3 Semantic Analysis 

The semantic analysis is the phase of the compilation process in which semantic 
information is added to the parse tree and certain checks based on this information 
is performed. Typical examples of semantic information that should be added and 
checked is type information (type checking) and the binding of variables and 
function names to their definitions (object binding). 

Symbol Tables 

A symbol table is a mechanism that associates values, or attributes with the 
names. A symbol table is a necessary component of a compiler because the 
definition of a name appears only one place in a program, while the name may be 
used in any number of places within the program code [7, 9, 10]. Each time a 
name is used, the symbol table provides access to the information collected about 
the name when its declaration was processed. There are programming languages 
in which the declaration of a variable may not precede the use of the variable, in 
these cases the creation of the symbol table cannot easily be created in parallel 
with the semantic processing. Fortunately, in most languages the declaration 
comes first, this means that the symbol table can be filled with information during 
the semantic analysis, therefore the parse tree does not have to be processed 
several times. 
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Most programming languages allow name scopes to be nested; a name scope is 
usually defined by program units such as a package or a block. Name scopes can 
be current (actual, innermost), open and closed. Obviously, these are not fixed 
attributes of scopes; they are defined relative to a particular point in the program. 
Two well-known solutions exist to solve the problem of symbol tables in block-
oriented programming languages: an individual table for each scope or a single 
symbol table. If an individual symbol table is created for each scope, some 
mechanism must be used to ensure that a search produces the name defined by the 
visibility rules. As the name scopes are opened and closed in a LIFO manner, a 
stack is appropriate for this organization. Using a single table for all symbols, the 
scopes have to be differentiated. Each name scope should be given a unique 
number. In this case, a name can appear in the table several times if the scope 
number is different [9]. 

Attribute Grammars 

Parse trees are used to drive the semantic analysis of the source code in a 
compiler. A semantic analysis approach is to augment our conventional 
production rules with information to control the analysis. Such grammars are 
called attribute grammars. 

We augment our grammar by associating attributes with each grammar symbol to 
describe its properties; such an attribute can be the type of a variable or the integer 
value of an integer node. After defining the attributes, the production rules have to 
be extended with semantic actions, which describe how to compute the associated 
attribute value [7]. 

Two types of attributes exist: synthesized attribute and inherited attributes. 
Synthesized attribute means that the attributes of the symbols on the left-hand side 
of the production rules have been created from those at the right-hand side. This 
can be imagined as the attribute values being passed up in the parse tree. It is also 
useful to be able to pass semantic information down in the parse tree. In this case, 
the right-hand side attribute values are generated from the left-hand side ones and 
it is also possible to use other right-hand side attribute values. These attributes are 
called inherited attributes. 

3.3 Code Generation 

Having completed syntax and semantic analysis of the source program, all the 
necessary information is available to generate the target language code from the 
parse tree. Typical ways of creating the target code is traversing the parse tree and 
processing every node in it. In this case processing means that the target code for 
the actual node should be created. Generally, in the code generation process, the 
previously created parse tree is not modified just read. 
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4 Implemented Compiler 

This compiler is not a general-purpose Imperative OCL translator application; it is 
specifically created for the use in the Visual Modeling and Transformation System 
(VMTS) [3]. The semantic analysis uses a VMTS interface to check the necessary 
restrictions; also the generated C# code is specially created for the VMTS and it 
utilize huge amount of VMTS built-in functions. 

4.1 Architecture 

Figure 3 depicts the simplified architecture of the created compiler. The class 
diagram only displays the classes that are connected with the compiler, thus the 
Adaptive Modeler is not shown, however, without that, the creation of models and 
transformations are difficult tasks as that is a widely configurable user interface 
for the VMTS. 

AGSICommon 

AGSICommon (Attributed Graph Architecture Supporting Inheritance) [3] is the 
namespace of the most frequently used functions in VMTS. Every model 
information can be queried through this namespace; as the models are stored in a 
relational database, the model queries require database connection. 

AGSIImperativeOCLInterface 

AGSIImperativeOCLInterface is the main interface for checking model 
information. The main aim of this interface is to hide the complex structures used 
in the AGSICommon namespace and provide a simpler connection to the modeling 
elements. 

ImperativeOCLInterface 

ImperativeOCLInterface is a simple interface to reach the Imperative OCL 
compiler. It has only one important public method, the GetCSharpCode(), which 
gets an array of unique identifiers of models, and returns the C# code of a 
compilable class that implements the functions of the input source codes. This 
function calls the Compile() method of the ImperativeOCLCompiler class for the 
number of the length of the input array, and the returned CompileJob objects that 
contains the CodeDom trees are then compiled together to make up a single class 
at the end of the process. 

ImperativeOCLCompiler 

ImperativeOCLCompiler is the main class of the implemented compiler. This 
class processes the input source language code with passing it to the 
ParseWrapper (the syntax analyser), then to the SemanticAnalyser and at the end 
to the DBCompiler (the code generator). The passage between the managed C# 
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code and the unmanaged C code generated by Bison is handled in the 
ParseWrapper with a custom marshalling method. The semantic analyser uses the 
ImpOCLFunctionHelper class during the pre-processing phase to create the 
symbol table of the defined functions. The type checking methods are 
implemented in the AGSIImperativeOCLInterface, which is reached through the 
TypeHandler class to hide the differences between model elements. 

ImperativeOCLRuntime 

A C# class had been implemented for each defined OCL type, these classes are 
placed into the ImperativeOCLRuntime namespace. The implemented hierarchy 
follows the type hierarchy specified in the OCL specification [6]. OCL does not 
specify model type classes, but the simple code generation requires it; this class is 
implemented separately from the base types. 

ImperativeOCLRuntime

+GetCSharpCode() : string

«interface»
ImperativeOCLInterface

«interface»
AGSIImperativeOCLInterface

+IsDefined() : bool
-functions
ImpOCLFunctionHelper

+Compile() : CompileJob

ImperativeOCLCompiler

+Parse() : CompileJob

ParseWrapper

+parse()

ImpOCLParserMFC

+Process() : CompileJob

SemanticAnalyser

+GetType() : Type

TypeHandler

+Process() : CompileJob

DBCompiler

AGSICommon

«uses»

«uses»

«uses»

 
Figure 3 

Architecture of the implemented compiler 

4.2 Analysis 

Context-free grammars are powerful enough to describe the syntax of most 
programming languages. Fortunately, the parsers can be generated automatically 
from the grammar and action rules. These actions can be target language code (but 
more generally the action rules creates the intermediate representation of the 
source code), which is executed when a reduce action is needed in the parsing 
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process. The automatic generation is a flexible way of creating a parser, because 
the modifications in the grammar can be handled easily. Bison [11] and Flex [11] 
(for the lexical analysis) are the most traditional tools, Bison is a general-purpose 
parser generator that converts a context-free grammar into an LALR(1) (Look 
Ahead LR) parser. Bison generates C language target code, which can easily b 
used in C#, thus we chose this compiler-generator for our implementation. 

The architecture of the implemented compiler allows the total separation of the 
syntax and semantic analysis. During the syntax analysis a tree is created, which is 
then passed to the semantic analyser. The semantic analyser is the last part of the 
compiler that can modify the parse tree, because no optimization process had been 
implemented yet. A simple modification is the addition of default values to simply 
type variables that have not been initialized. In semantic analysis symbol tables 
have been implemented for function and (global) variable handling. The type 
checking is based on attribute grammars, however no attributes are written in the 
production rules. The attributes are added to the parse tree in our solution. 

4.3 Code Generation 

The code generation is based on the CodeDom [12] namespace of the .NET 
framework. This means that the parse tree is converted into a CodeDom tree, and 
later from this tree, the framework can generate the C# language code. This target 
language code is then compiled into a dynamic-link library (DLL) for execution. 
The code generation leans on the ImperativeOCLRuntime, which collects together 
C# classes based on OCL types. Between simple types and their OCL equivalents 
implicit type conversion is implemented to make the code generation easier and 
simpler. 

4.3.1 Variables 

As previously mentioned, OCL is a side-effect free programming language, which 
has no real variables in it. The previously implemented OCL compiler created a 
C# function for each expression. This is a reasonable solution there, but in case of 
Imperative OCL, it causes a lot of problem, because the defined variables can not 
be accessed from a function as the visibility and the scope is different. 

As Imperative OCL and normal OCL, expressions can be mixed in the code a 
general solution is needed for this problem. The implemented solution is the 
following: a unique name is assigned to each variable as an attribute when it is 
created. In the source code, this unique name will be the real name of the variable. 
The target language variables are placed into a separate class and are defined as 
static variables. Therefore, they can be accessed from any point in the target 
language code. Semantic analysis previously checked whether the program is 
semantically correct or not, thus a variable reference can only be placed where it 
makes sense. 
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4.3.2 Break and Continue 

Almost the same problem appears with the use of break and continue expressions. 
The problem is that if these expressions are in a generated function, the loop may 
be elsewhere, thus the generated break and continue C# expressions are 
semantically incorrect in the created code. Unfortunately, this cannot be solved 
with the previously applied method. Furthermore, these expressions should be in a 
loop expression and they should only affect the innermost loop expression if there 
are nested ones. 

The implemented solution uses C# exceptions to deal with the complication. For 
each break and continue Imperative OCL expression an exception throwing 
statement is created in C#. In addition, every loop expression has a try-catch block 
in it, which catches the break and continue exceptions, and in the catch part a 
break or continue C# expression is generated. This solution satisfies the needed 
restrictions: semantically correct (the new break or continue expression is placed 
inside a C# loop), works between functions and only the innermost loop is 
affected, because that catches the exception and does not throw a new one. 

Conclusion and Further Work 

This paper has shown a viable way of developing a compiler based on a high-level 
programming framework. After understanding the basics of compiler theory one 
can create powerful translator applications, which can be used for several different 
purposes. This paper has illustrated how a compiler can be used in a modelling 
and transformation system. With this Imperative OCL compiler, the development 
time of a transformation has been decreased into a fraction of the previously 
needed time. Our former solution based on XSL transformations did not allow us 
to easily modify the transformations, as those were quite long and complex. With 
Imperative OCL, the causalities can be expressed in a compact and legible format. 

Future work includes several directions. Finishing the whole specification is not 
an optional future work, but a must. The structure of the compiler can be easily 
extended with an optimization block. Simple optimization could vary from the use 
of cache tables to unreachable code elimination, but other platform-specific 
optimization could also be applied as the base of VMTS will probably not change. 
Another direction of future work is based on the power of the Imperative OCL 
language. OCL supports object-oriented application development, and with 
imperative extension, it is capable of expressing common event handling 
functions. In VMTS, there is a mobile user interface designer plug-in, which 
supports different mobile phone platforms, such as Symbian, J2ME or .NET 
Compact Framework. With this plug-in, the different user interfaces can be 
managed, but the event handling functions have to be implemented in different 
languages (C++, Java, C#). The idea of using a common language to express the 
functions and then translate it automatically to each target language is simple and 
could be solved with the compiler. The modular structure of the compiler only 
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necessitates the modification of the code generation phase of the compilation 
process. 
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