
Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 393

Imperative OCL Compiler Support for Model
Transformations

Tamás Vajk, Tihamér Levendovszky
Department of Automation and Applied Informatics, Budapest University of
Technology and Economics
{tamas.vajk, tihamer}@aut.bme.hu

Abstract: Model-Driven Architecture (MDA) is a widely known software design approach,
which is intended to support model-driven engineering of software systems with
specifications expressed as models. Using the MDA methodology, system functionality may
first be defined as a platform-independent model (PIM) through an appropriate modeling
language. Then the PIM may be translated into one or more platform-specific models
(PSMs) for the actual implementation. These translations between the PIM and PSMs are
normally performed using automated tools, such as model transformation systems, for
example, tools compliant to the new OMG standard, named QVT
(Queries/Views/Transformations). To facilitate flexible and powerful model
transformations, OMG has specified the Imperative OCL language in QVT; this language
allows using the most common programming constructs. This paper descibes the necessary
steps of developing a compiler from lexical analysis to code generation through syntactic
and semantic analysis. Our implementation of the Imperative OCL compiler is attached to
the Visual Modeling and Transformation System (VMTS), which is an n-layered modeling
environment.

Keywords: MDA, QVT, Imperative OCL, compiler

1 Introduction

One of the most focused fields of software engineering is modeling and a flexible
tool support for improving the quality of the development process. Model-Driven
Architecture (MDA) [1] is a software design approach that supports model-driven
engineering of software systems with specifications expressed as models. Several
UML-based modeling tools exist; the problem with these applications is that they
do not allow the modification of their model definition. Metamodeling tools give
the ability to edit a metamodel, which defines the rules of a model. The
metamodel determines which types of objects are allowed during the modeling
process, what kind of attributes or relations they can have.

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 394

After having customizable models based on metamodels, the need to transform a
model into another type appeared. Generally, model transformation is the process
of converting a model conforming to a metamodel to another model, which
conforms to another metamodel. The first metamodel is called source metamodel,
the second is referred to as target metamodel. The way of translating a model into
another is not trivial, a standard named QVT [2] has been proposed by the Object
Management Group (OMG) to handle this task.

This paper only deals with a small part of model transformation; input model
matching and validation of transformations are not discussed. During a
transformation, new model elements should be created, and their attributes as well
as their relations to each other must be set. In QVT, these tasks are handled by the
Imperative OCL language. This paper presents a way of creating a compiler that
transforms Imperative OCL sources into C# codes.

The implemented compiler has been installed into the Visual Modeling and
Transformation System (VMTS) [3], which is an n-layer metamodeling
environment that supports editing models according to their metamodels.
Moreover, VMTS is a UML-based model transformation system, which
transforms models using graph-rewriting techniques.

2 Model Transformation

The aim of Model-Driven Architecture is to support the model based software
design by the use of models on every stage of the system development. MDA
offers a framework to separate the platform-independent and the platform-specific
information used in models. The general modeling information is collected into a
platform-independent model (PIM), which is usually expressed in UML. The
actual implementation of an application is defined in a platform-specific model
(PSM). A complete MDA application may contain several PSMs, according to the
number of supported platforms. The idea of generating PSMs from PIM is
obvious, because the platform specific information is well-known, and can be
added to the base model automatically. This generation process is realized by
model transformation. More generally, converting a model to another is the model
transformation process. If the metamodels of the models equal, then the
transformation is endogenous, otherwise it is exogenous [4].

2.1 QVT

Model transformation is a critical component of MDA. Therefore, a request for
proposal has been issued by the OMG on MOF Query/Views/Transformations [2]
to seek a standard that is compatible with the MDA recommendation suite (UML,

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 395

MOF, OCL, etc.). QVT defines a standard way of transformations between
models. The QVT specification has a hybrid declarative/imperative nature, with
the declarative part being split into a two-level architecture.

Figure 1

Structure of QVT

The two layers of the declarative part are the Relations and the Core metamodels
and languages. The user-friendly Relations metamodel and language supports
complex object pattern matching and object template creation, and implicitly
creates trace classes and their instances to record what occurred during the
execution of the transformation. The Core metamodel and language is defined
using minimal extensions to the EMOF and OCL. The Core language supports
pattern matching over a flat set of variables by checking conditions over those
variables against a set of models. It is equally powerful to the Relations language,
and because of its relative simplicity, its semantics can be defined more simply,
although transformation descriptions described using the Core are therefore more
verbose [2, 5].

In addition to the declarative Relations and Core languages that embody the same
semantics at two different levels of abstraction, there are two mechanisms for
invoking imperative implementations of transformations from Relations or Core:
one standard language, Operational Mappings, as well as non-standard Black-box
MOF Operation implementations. The Operational Mappings language provides
OCL extensions with side-effects that allow a more procedural style of
programming. The Black Box implementation for invoking transformation
facilities expressed in other languages (XSLT, XQuery) is also an important part
of the specification. It is especially useful for integrating existing non-QVT
libraries.

2.2 Imperative OCL

The QVT Operational Mappings is an imperative language that supports the
creation of powerful model transformations. It extends the Object Constraint
Language (OCL) [6] with all the necessary programming constructs that are
needed to write complex transformations in a comfortable way. It also extends the
type hierarchy of OCL, for instance with dictionaries (hashtables).

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 396

OCL is a declarative language for defining rules that have to apply to UML
models. With the use of OCL, UML has been extended, because it allows the
creation of rules that cannot be expressed by UML structures. OCL is textual
language that provides constraint and object query expressions. As OCL is a query
language, it cannot modify the models, and therefore OCL is a purely side-effect-
free language.

An assignment expression represents a value assignment to a variable or to a
property of a model element. In case of multiple-value variables (i.e. set, ordered
set), there are two types of assignments. The first type of assignment resets the
value of the variable, while the second one adds the new values to the collection.
Only the assignment signs differentiate these cases (:=, +=). An instantiation
expression creates an instance of a class.

The importance of these expressions is arisen by the fact that these are the
constructs that can modify the models; thus, these expressions outrage the side-
effect-freeness of the OCL and these are the most powerful innovations in the
Imperative OCL.

3 Compiler Theory

A compiler is a program that translates a program code written in the source
language into another equivalent program code written in the target or object
language. Typically, the source language is a programming language, such as
C++, and the target language is the machine code for the computer being used.

3.1 Structure of a Compiler

The compilation process can be divided into a number of logical phases. Some of
these phases can run simultaneously, but generally, these are executed
consecutively. The translation of a programming language is divided into two
main blocks: the front end and the back end. The front end analyses the source
code to build an internal representation of the program, called the intermediate
representation (IR). It also manages the symbol table, a data structure mapping
each symbol in the source code to associated information such as location, type
and scope. The back end is responsible for generating the target language code.
These parts may be further subdivided into logical blocks. The main phases of the
front end are lexical, syntax and semantic analyser. The back end breaks down
into a code optimizer and a code generator [7].

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 397

Source
language

Lexical
analysis

Syntax
analysis

Semantic
analysis

Intermediate
representation

Intermediate
code optimizer

Code
generator

Target code
optimizer

Target
language

Front end

Back end
Figure 2

Logical structure of a compiler

3.2 Analysis

3.2.1 Lexical Analysis

Lexical analysis is the first of two stages in the analysis of the structure of a source
code. The smallest fragment of a source code is a character, but this symbol is too
small to bear with enough information. The smallest logical entities in
programming codes are words; more precisely these can be keywords (while, for),
literals (‘example string’, 1000), operators (==, +=) and identifiers (variable
names). These strings of characters are named tokens. The grammar of a
programming language can be divided into two parts: the first one can express the
structure of the tokens and the second part can define the main logic of the
grammar, in which we use tokens. The prime reasons of separating the structural
analysis into two stages are efficiency and clarity [7].

The pattern describing each token can always be expressed as a conventional
regular grammar [8, 9]. Therefore, this part of the analysis can be made by finite
state machines, which are much simpler and faster than those parsers that have to
be used for the complete syntactical analysis. Lexical analysis can be the most
time-consuming part of a compilation process [7]. This is primarily caused by the
fact that it handles the whole input, therefore, the previously mentioned separation
is essential.

3.2.2 Syntactical Analysis

The task of the syntactical analysis is to find a derivation for the input sentence
from the sentence symbol. A parser uses the input stream or code and the
production rules to creates a syntax tree, which shows the applying order of the
production rules to generate the given source code. This parse tree is an ordered,
directed tree. Ordered, because the sequence of the outgoing edges in a vertex is
determined. Each inner vertex of this tree contains a non-terminal symbol (the root

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 398

vertex is the sentence symbol), while each leaf holds a terminal character (more
accurately a token, because the lexical and syntax analysis is separated). If there is
no syntax tree for the given input, then the given input was not a syntactically
correct program, as the parse tree defines a concrete derivation for the input.

There are two obvious ways of building up a parse tree. The first is to start with
the sentence symbol and build down towards the terminals; the second is to start
from the terminals and build up towards the start symbol [7, 8]. These are known
as top-down and bottom-up parsing methods. Algorithms exist to parse any Type
2 languages, but only a subset of grammars can be parsed efficiently. Fortunately,
most programming languages can be analysed simply.

A well-known analyser is the LL(k) parser. It parses the input from Left to right,
constructs the Leftmost derivation of the sentence and looks ahead k tokens.
Another parser is the LR(k) parser, which also analyses the input from Left to
right, but constructs the Rightmost derivation of the sentence. LL parsers always
start with the sentence symbol, therefore these are top-down parsers, on the other
hand, LR parsers are bottom-up analysers, because these start from the terminals
and go upward in the tree. It has been proved that every LL(k) language can be
parsed with LR(k) parsers, but there exist languages which cannot be analysed by
LL(k) parsers. This means that LR parsing method is more powerful than the LL.
The complexity of a parser grows with the look-ahead number, thus k should be
minimized. Most programming languages can be parsed with only one token look-
ahead, therefore LR(1) parsers are used in practice [4].

3.2.3 Semantic Analysis

The semantic analysis is the phase of the compilation process in which semantic
information is added to the parse tree and certain checks based on this information
is performed. Typical examples of semantic information that should be added and
checked is type information (type checking) and the binding of variables and
function names to their definitions (object binding).

Symbol Tables

A symbol table is a mechanism that associates values, or attributes with the
names. A symbol table is a necessary component of a compiler because the
definition of a name appears only one place in a program, while the name may be
used in any number of places within the program code [7, 9, 10]. Each time a
name is used, the symbol table provides access to the information collected about
the name when its declaration was processed. There are programming languages
in which the declaration of a variable may not precede the use of the variable, in
these cases the creation of the symbol table cannot easily be created in parallel
with the semantic processing. Fortunately, in most languages the declaration
comes first, this means that the symbol table can be filled with information during
the semantic analysis, therefore the parse tree does not have to be processed
several times.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 399

Most programming languages allow name scopes to be nested; a name scope is
usually defined by program units such as a package or a block. Name scopes can
be current (actual, innermost), open and closed. Obviously, these are not fixed
attributes of scopes; they are defined relative to a particular point in the program.
Two well-known solutions exist to solve the problem of symbol tables in block-
oriented programming languages: an individual table for each scope or a single
symbol table. If an individual symbol table is created for each scope, some
mechanism must be used to ensure that a search produces the name defined by the
visibility rules. As the name scopes are opened and closed in a LIFO manner, a
stack is appropriate for this organization. Using a single table for all symbols, the
scopes have to be differentiated. Each name scope should be given a unique
number. In this case, a name can appear in the table several times if the scope
number is different [9].

Attribute Grammars

Parse trees are used to drive the semantic analysis of the source code in a
compiler. A semantic analysis approach is to augment our conventional
production rules with information to control the analysis. Such grammars are
called attribute grammars.

We augment our grammar by associating attributes with each grammar symbol to
describe its properties; such an attribute can be the type of a variable or the integer
value of an integer node. After defining the attributes, the production rules have to
be extended with semantic actions, which describe how to compute the associated
attribute value [7].

Two types of attributes exist: synthesized attribute and inherited attributes.
Synthesized attribute means that the attributes of the symbols on the left-hand side
of the production rules have been created from those at the right-hand side. This
can be imagined as the attribute values being passed up in the parse tree. It is also
useful to be able to pass semantic information down in the parse tree. In this case,
the right-hand side attribute values are generated from the left-hand side ones and
it is also possible to use other right-hand side attribute values. These attributes are
called inherited attributes.

3.3 Code Generation

Having completed syntax and semantic analysis of the source program, all the
necessary information is available to generate the target language code from the
parse tree. Typical ways of creating the target code is traversing the parse tree and
processing every node in it. In this case processing means that the target code for
the actual node should be created. Generally, in the code generation process, the
previously created parse tree is not modified just read.

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 400

4 Implemented Compiler

This compiler is not a general-purpose Imperative OCL translator application; it is
specifically created for the use in the Visual Modeling and Transformation System
(VMTS) [3]. The semantic analysis uses a VMTS interface to check the necessary
restrictions; also the generated C# code is specially created for the VMTS and it
utilize huge amount of VMTS built-in functions.

4.1 Architecture

Figure 3 depicts the simplified architecture of the created compiler. The class
diagram only displays the classes that are connected with the compiler, thus the
Adaptive Modeler is not shown, however, without that, the creation of models and
transformations are difficult tasks as that is a widely configurable user interface
for the VMTS.

AGSICommon

AGSICommon (Attributed Graph Architecture Supporting Inheritance) [3] is the
namespace of the most frequently used functions in VMTS. Every model
information can be queried through this namespace; as the models are stored in a
relational database, the model queries require database connection.

AGSIImperativeOCLInterface

AGSIImperativeOCLInterface is the main interface for checking model
information. The main aim of this interface is to hide the complex structures used
in the AGSICommon namespace and provide a simpler connection to the modeling
elements.

ImperativeOCLInterface

ImperativeOCLInterface is a simple interface to reach the Imperative OCL
compiler. It has only one important public method, the GetCSharpCode(), which
gets an array of unique identifiers of models, and returns the C# code of a
compilable class that implements the functions of the input source codes. This
function calls the Compile() method of the ImperativeOCLCompiler class for the
number of the length of the input array, and the returned CompileJob objects that
contains the CodeDom trees are then compiled together to make up a single class
at the end of the process.

ImperativeOCLCompiler

ImperativeOCLCompiler is the main class of the implemented compiler. This
class processes the input source language code with passing it to the
ParseWrapper (the syntax analyser), then to the SemanticAnalyser and at the end
to the DBCompiler (the code generator). The passage between the managed C#

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 401

code and the unmanaged C code generated by Bison is handled in the
ParseWrapper with a custom marshalling method. The semantic analyser uses the
ImpOCLFunctionHelper class during the pre-processing phase to create the
symbol table of the defined functions. The type checking methods are
implemented in the AGSIImperativeOCLInterface, which is reached through the
TypeHandler class to hide the differences between model elements.

ImperativeOCLRuntime

A C# class had been implemented for each defined OCL type, these classes are
placed into the ImperativeOCLRuntime namespace. The implemented hierarchy
follows the type hierarchy specified in the OCL specification [6]. OCL does not
specify model type classes, but the simple code generation requires it; this class is
implemented separately from the base types.

ImperativeOCLRuntime

+GetCSharpCode() : string

«interface»
ImperativeOCLInterface

«interface»
AGSIImperativeOCLInterface

+IsDefined() : bool
-functions
ImpOCLFunctionHelper

+Compile() : CompileJob

ImperativeOCLCompiler

+Parse() : CompileJob

ParseWrapper

+parse()

ImpOCLParserMFC

+Process() : CompileJob

SemanticAnalyser

+GetType() : Type

TypeHandler

+Process() : CompileJob

DBCompiler

AGSICommon

«uses»

«uses»

«uses»

Figure 3

Architecture of the implemented compiler

4.2 Analysis

Context-free grammars are powerful enough to describe the syntax of most
programming languages. Fortunately, the parsers can be generated automatically
from the grammar and action rules. These actions can be target language code (but
more generally the action rules creates the intermediate representation of the
source code), which is executed when a reduce action is needed in the parsing

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 402

process. The automatic generation is a flexible way of creating a parser, because
the modifications in the grammar can be handled easily. Bison [11] and Flex [11]
(for the lexical analysis) are the most traditional tools, Bison is a general-purpose
parser generator that converts a context-free grammar into an LALR(1) (Look
Ahead LR) parser. Bison generates C language target code, which can easily b
used in C#, thus we chose this compiler-generator for our implementation.

The architecture of the implemented compiler allows the total separation of the
syntax and semantic analysis. During the syntax analysis a tree is created, which is
then passed to the semantic analyser. The semantic analyser is the last part of the
compiler that can modify the parse tree, because no optimization process had been
implemented yet. A simple modification is the addition of default values to simply
type variables that have not been initialized. In semantic analysis symbol tables
have been implemented for function and (global) variable handling. The type
checking is based on attribute grammars, however no attributes are written in the
production rules. The attributes are added to the parse tree in our solution.

4.3 Code Generation

The code generation is based on the CodeDom [12] namespace of the .NET
framework. This means that the parse tree is converted into a CodeDom tree, and
later from this tree, the framework can generate the C# language code. This target
language code is then compiled into a dynamic-link library (DLL) for execution.
The code generation leans on the ImperativeOCLRuntime, which collects together
C# classes based on OCL types. Between simple types and their OCL equivalents
implicit type conversion is implemented to make the code generation easier and
simpler.

4.3.1 Variables

As previously mentioned, OCL is a side-effect free programming language, which
has no real variables in it. The previously implemented OCL compiler created a
C# function for each expression. This is a reasonable solution there, but in case of
Imperative OCL, it causes a lot of problem, because the defined variables can not
be accessed from a function as the visibility and the scope is different.

As Imperative OCL and normal OCL, expressions can be mixed in the code a
general solution is needed for this problem. The implemented solution is the
following: a unique name is assigned to each variable as an attribute when it is
created. In the source code, this unique name will be the real name of the variable.
The target language variables are placed into a separate class and are defined as
static variables. Therefore, they can be accessed from any point in the target
language code. Semantic analysis previously checked whether the program is
semantically correct or not, thus a variable reference can only be placed where it
makes sense.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 403

4.3.2 Break and Continue

Almost the same problem appears with the use of break and continue expressions.
The problem is that if these expressions are in a generated function, the loop may
be elsewhere, thus the generated break and continue C# expressions are
semantically incorrect in the created code. Unfortunately, this cannot be solved
with the previously applied method. Furthermore, these expressions should be in a
loop expression and they should only affect the innermost loop expression if there
are nested ones.

The implemented solution uses C# exceptions to deal with the complication. For
each break and continue Imperative OCL expression an exception throwing
statement is created in C#. In addition, every loop expression has a try-catch block
in it, which catches the break and continue exceptions, and in the catch part a
break or continue C# expression is generated. This solution satisfies the needed
restrictions: semantically correct (the new break or continue expression is placed
inside a C# loop), works between functions and only the innermost loop is
affected, because that catches the exception and does not throw a new one.

Conclusion and Further Work

This paper has shown a viable way of developing a compiler based on a high-level
programming framework. After understanding the basics of compiler theory one
can create powerful translator applications, which can be used for several different
purposes. This paper has illustrated how a compiler can be used in a modelling
and transformation system. With this Imperative OCL compiler, the development
time of a transformation has been decreased into a fraction of the previously
needed time. Our former solution based on XSL transformations did not allow us
to easily modify the transformations, as those were quite long and complex. With
Imperative OCL, the causalities can be expressed in a compact and legible format.

Future work includes several directions. Finishing the whole specification is not
an optional future work, but a must. The structure of the compiler can be easily
extended with an optimization block. Simple optimization could vary from the use
of cache tables to unreachable code elimination, but other platform-specific
optimization could also be applied as the base of VMTS will probably not change.
Another direction of future work is based on the power of the Imperative OCL
language. OCL supports object-oriented application development, and with
imperative extension, it is capable of expressing common event handling
functions. In VMTS, there is a mobile user interface designer plug-in, which
supports different mobile phone platforms, such as Symbian, J2ME or .NET
Compact Framework. With this plug-in, the different user interfaces can be
managed, but the event handling functions have to be implemented in different
languages (C++, Java, C#). The idea of using a common language to express the
functions and then translate it automatically to each target language is simple and
could be solved with the compiler. The modular structure of the compiler only

T. Vajk et al.
Imperative OCL Compiler Support for Model Transformations

 404

necessitates the modification of the code generation phase of the compilation
process.

References

[1] Object Management Group: Model-Driven Architecture Specification
http://www.omg.org/docs/omg/03-06-01.pdf

[2] Object Management Group: MOF QVT Specification
http://www.omg.org/docs/ptc/05-11-01.pdf

[3] VMTS Homepage, http://www.vmts.aut.bme.hu

[4] Wikipedia The Free Encyclopaedia, http://www.wikipedia.org/

[5] L. Lengyel, T. Levendovszky, H. Charaf: Realizing QVT with Graph
Rewriting-Based Model Transformation, Electronic Communications of
the EASST, 2006

[6] Object Management Group: Object Constraint Language Specification
http://www.omg.org/docs/ptc/03-10-14.pdf

[7] J. P. Bennett: Introduction to Compiling Techniques, McGraw Hill
Publishing Company, 1996

[8] Bach Iván: Formális nyelvek, Typotex Kiadó, 2002

[9] Charles N. Fisher, Richard J. LeBlanc, Jr.: Crafting a Compiler, The
Benjamin/Cummings Publishing Company, 1988

[10] Alfred V. Aho, Revi Sethi, Jeffry D. Ullman: Compilers, Addison-Wesley
Publishing Company, 1986

[11] Bison and Flex, http://www.gnu.org/software/bison/manual/
http://www.gnu.org/software/flex/manual/

[12] Microsoft Developer Network, http://msdn2.microsoft.com

