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Abstract: The chemical processes developed in the 15N-isotope separation plant are very 
complex and many details are not yet known in totality. The authors are concerned with the 
problem of developing effective and readily implemental techniques for modelling and 
control of the isotope separation plant. In the present paper are presented a variant of 
Model Predictive Control (MPC) of the isotope separation plant. 
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1 Introduction 

In scientific research or industrial applications, the stable isotopes of O, N, C, etc 
are widely used [1]. In natural conditions, the ratio of concentration of the 
nitrogen 14N/15N is: 99.635 / 0.365 (%). In specific applications is asked a 
greater ‘abundance’ of the isotope (15N), if possible up to 99.9 (%). 

There are known more methods to separate the (15N) isotope, both in laboratory 
scale or in large scale production. The actual paper studies the method invented by 
Spindel and Taylor about 1955, which is based on the ‘chemical exchange’ 
between liquid phase of nitric acid and gaseous phase of monoxide and dioxide of 
nitrogen: 
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Since the ratio of the reduced partition functions [3] is greater in the nitric acid 
molecule than in the oxide molecule, the (15N) isotope accumulates in acid. 
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2 The (15N) Isotope Separation Column 

In Figure 1 is depicted a simplified scheme of (15N) isotope separation column 
[1], with: 

N, n – the mole fraction of 15N in liquid and pas phase [ - ]; 

L, G – specific flow of 15N in the recycled streams in [moles⋅s-1⋅m-2]; 

Hl, Hg – the holdup in [moles⋅m-3]; 

T – rate of transfer of 15N-isotope in [moles⋅s-1⋅ m-3]; 

K – the transfer rate coefficient [moles⋅s-1⋅m-3]; 

α - the separation factor [ - ], 

and ( ) ( )[ ]N1nn1NkT −α−−−=  [moles⋅s-1⋅m-3]. 

The enrichment process is governed by the equations [3]: 
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The isotope exchange is achieved in column, endowed with a special packing [1]. 
The withdrawal (P) enriched in (15N) isotope is possible at the bottom side of the 
column. The column is fed with constant nitric acid flow (F), with a natural 
concentration (0.3654%) of (15N). In the bottom refluxer (R1) [2], using sulphur 
dioxide, the (NO) and (NO2) are ‘generated’ in accord to the chemical reaction: 
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The top refluxer (R2), Figure 1, provides the reverse phase transformation: 
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while the nitric acid flow is enriched in (15N) isotope. 
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Figure 1 

Simplified arrangement of the 15N-isotope separation plant 
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3 The Simplified Mathematical Model for Control 

It can be seen that the dynamics of the separation column and the adjoining 
equipment is rather complex. By using the traditional mass and heat balances, a 
high-order dynamic model can be derived. The resulting model would be highly 
nonlinear. 

Another approach is to use a simple model of the process which describes its most 
important properties in combination with a robust controller. 

Based on the data related in literature [2], the authors are searching for the main 
connections between input and output variables and between input variables and 
the parameters in equation (2). 

The main input variables of the separation plant are [4]: 

- rate-flow (Lc1) of the nitric acid with the mole ratio (cM); 

- rate-flow (Lc2) of the water, or the ratio 2
/

1

c
w a

c

Lr L=  

- temperature of the cooling water (θi); 

- rate-flow of the sulphur dioxide (G1); 

- rate-flow of the end-product (P) with the mole-fraction (cP). 

The ‘direct’ output variables are: 

- the middle temperatures in the column (θc); 

- the ‘position’ of the reaction zone in the bottom-refluxer (hh); 

- the evolution of the mole-fractions (N, n) of 15N in recycled streams 
(liquid and gas). 

The ‘indirect’ outputs are the values of the parameters: 

- (α) = separation factor 

- and (k) = transfer rate coefficient. 

Following the equations described in [5], the transfer matrix of the simplified 
separation plant is: 
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4 The Control Problem 

The control problem for isotope-separation plants differs from that of other 
manufacturing operations in the degree of complexity. From a theoretical point of 
view it is clear that the ‘optimal’ controller should use all available information 
(measurements of outputs and disturbances, plant model, expected model 
uncertainty, expected disturbances, known future reference changes, given 
constraints, etc.) to manipulate all 4 inputs (but avoiding large changes) to keep all 
4 outputs close to their desired setpoints. Something close to this ‘optimal 4×4 
controller’ can be realized using model predictive control (MPC). In addition to 
achieving better control performance, one then avoids the issue of selecting a 
control configuration, and the need to design special systems to handle input 
saturation (constraints) etc. The simulation results using MPC are presented in 
Figures 2 and 3. 
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Simulation results of MPC control in standard operation conditions of the column 
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Simulation results of MPC control in special operation conditions of the column 

It can be seen, that in some operation conditions the MPC control do not offer 
satifactory responses. For this reasons we derive an MPC controller that explicitly 
considers the external disturbances. The standard way to do this is to look at 
worst-case scenarios, which translates into solving a minimax problem [8]. One of 
the main ideas with the algorithms that are developed for the column is that they 
should be as close as possible to the original nominal MPC formulation. Changing 
from a nominal to a worst-case performance measure should not force you to 
leave the classical framework with finite horizon quadratic performance measures. 
Hence, the following minimax problem is used: 
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For robust performance analysis are provided LMI based functionalities. 

The closed-loop responses for the proposed minimax controller and a nominal 
MPC controller shows that the minimax controller is successful in keeping the 
constrained output within its limits, in contrast to the nominal controller. The price 
paid is a slower step-response in the controlled output. 

Conclusions 

The isotope separation plant is complex equipment, nonlinear, with variable 
parameters and with very large equivalent time constant (of the order of days). 
The linear simplified mathematical model is, in opinion of authors, the single way 
to implement an effective control system. 
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The ‘optimal’ controller should use all available information (measurements of 
outputs and disturbances, plant model, expected model uncertainty, expected 
disturbances, known future reference changes, given constraints, etc.) to 
manipulate all 4 inputs (but avoiding large changes) to keep all 4 outputs close to 
their desired setpoints. Something close to this ‘optimal 4×4 controller’ can be 
realized using robust predictive control. 
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