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1 Introduction

The aggregation operators (we shall call them, for real valued case, aggre-
gation functions) form a fundamental part of multi-criteria decision making,
engineering design, expert systems, pattern recognition, neural networks, fuzzy
controllers, genetic algorithms. In many systems (specially intelligent) the ag-
gregation of incoming data plays the main role. Aggregation functions play
important role in many different approaches to decision making [5, 7, 9]. The
choice of the aggregation function depends on the actual application. To obtain
a sensible and satisfactory aggregation, any aggregation function should not be
used. To choose satisfactory aggregation functions, we can adopt an axiomatic
approach and impose that these functions fulfill some selected properties. These
properties can be dictated by the nature of the values to be aggregated, e.g., in
some multi-criteria evaluation methods, the aim is to assess a global absolute
score to an alternative given a set of partial scores with respect to different
criteria. It would be unnatural to give as global score a value which is lower
than the lowest partial score, or greater than the highest score, so that only
internal aggregation functions are allowed. If preference degrees coming from
transitive (in some sense) relations are combined, it is natural to require that
the result of combination remains transitive. Another example is related to
the aggregation of opinions in voting procedures. Since usually the voters are
anonymous, the aggregation function have to be symmetric.

We investigate some properties of aggregation functions, restricting with



more details on analytical properties (continuity and measures). We present
different type of continuity properties. Decision making needs more general
mathematical models, which involve also non-additive measures. Previously
used additive probability measures could not model some situations as e.g. the
Ellsberg Paradox, see [7].

2 Algebraic properties of aggregation
functions

First we present some basic mathematical properties of the aggregation func-
tions based on the book under preparation [8]. Throughout we denote by I any
nonempty real interval, bounded or not. The integer n represents the number
of values to be aggregated and x = (x1, . . . , xn) ∈ In.

Definition 1 An n-ary aggregation function in In is a function A(n) : In → I
that is nondecreasing, i.e., for any x,x′ ∈ In,

xi 6 x′i ∀i ∈ {1, . . . , n} ⇒ A(x) 6 A(x′),

and infx∈In A(n)(x) = inf I and supx∈In A(n)(x) = sup I.

Usually in the practice we consider the case I = [0, 1], and then the last
two equalities in the previous definition reduces on A(n)(0, . . . , 0) = 0 and
A(n)(1, . . . , 1) = 1. For example, the arithmetic mean as an aggregation func-
tion is defined by

AM(n)(x1, . . . , xn) =
1
n

n∑

i=1

xi.

When no confusion can arise, the aggregation function will be written A instead
of A(n). We use the convention A(1)(x) = x (x ∈ I). Note that, in that in
general for different n and m the functions A(n) and A(m) need to be related.
T

For the illustration and the next use we now give some well-known ag-
gregation functions. For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such
that

∑n
i=1 ωi = 1, the weighted arithmetic mean WAMω and the ordered

weighted averaging function OWAω associated to ω, are respectively defined by
WAMω(x) =

∑n
i=1 ωi xi, OWAω(x) =

∑n
i=1 ωi x(i). For any k ∈ {1, . . . , n},

the coordinate projection Pk and the order statistic function OSk associated
to the kth argument, are respectively defined by Pk(x) = xk, OSk(x) = x(k).
The projection of the first and the last coordinates are defined as PF (x) =
P1(x) = x1,PL(x) = Pn(x) = xn. Similarly, the extreme order statistics x(1)

and x(n) are respectively the minimum and maximum Min(x) = min(x1, . . . , xn),
Max(x) = max(x1, . . . , xn). Also, the median of an odd number of values
(x1, . . . , x2k−1) is simply defined by Med(x1, . . . , x2k−1) = x(k). The sum and
product are respectively defined by Σ(x) =

∑n
i=1 xi, Π(x) =

∏n
i=1 xi.



Notations: For any integer k > 1 and any x ∈ I, we set k · x := x, . . . , x
(k times). For any vectors x,x′ ∈ In, we denote by xx′ the n-dimensional
vector (x1x

′
1, . . . , xnx′n) obtained by calculated the product componentwise.

The vectors x + x′, x ∧ x′, and x ∨ x′ are defined similarly.For any x ∈ In
and any function ϕ : In → Rn, we denote by ϕ(x) the n-dimensional vector(
ϕ(x1), . . . , ϕ(xn)

)
. For any finite or denumerable set K, we let ΠK denote the

set of all permutations on K.Given a vector (x1, . . . , xn) and a permutation σ ∈
Π[n], the notation [x1, . . . , xn]σ means xσ(1), . . . , xσ(n), that is, the permutation
σ of the indices.

The first property we consider is symmetry , also called commutativity, neu-
trality, or anonymity. The commutativity of binary operation ∗ is usually given
in the form x ∗ y = y ∗ x, can be easily generalized for n-ary aggregation func-
tions, with n > 2, as follows.

Definition 2 A : In → I is a symmetric function if

A(x) = A([x]σ) (x ∈ In, σ ∈ Π[n]).

The symmetry property means that the aggregated value does not depend
on the order of the arguments. This is required when combining criteria of equal
importance or anonymous expert’s opinions, e.g., symmetry is more natural in
voting procedures than in multicriteria decision making, where criteria usually
have different importances. Many aggregation functions introduced till now
are symmetric. For example, AM, GM, OWAω are symmetric functions. Promi-
nent examples of non-symmetric aggregation functions are weighted arithmetic
means WAMω. In situations when judges, criteria, or individual opinions are
not equally important, the symmetry property must be omitted.

Definition 3 A : In → I is an idempotent function if

A(n · x) = x (x ∈ I).
Idempotency is in some areas supposed to be a genuine property of aggrega-

tion functions, e.g., in multi-criteria decision making [5], where it is commonly
accepted that if all criteria are satisfied at the same degree x then also the
global score should be x. It is obvious that AM, WAMω, OWAω, Min, Max, and
Med are idempotent functions, while Σ and Π are not. An element x ∈ I is an
idempotent for A : In → I if A(n · x) = x. In [0, 1]n the product Π has no other
idempotent elements than the extreme elements 0 and 1. As an example of an
aggregation function in [0, 1]n which is not idempotent but has a non-extreme
idempotent element, take an arbitrarily chosen element c ∈ ]0, 1[ and define
the aggregation function A{c} : [0, 1]n → [0, 1] as follows:

A{c}(x1, . . . , xn) = max
(
0, min

(
1, c +

n∑

i=1

(xi − c)
))

.

It is easy to see that the only idempotent elements for A{c} are 0, 1, and c.



The next class of properties concern the “clustering” character of the ag-
gregation functions, i.e., we assume that it is possible to partition the set of
the arguments into disjoint subgroups, build the partial aggregation for each
subgroup and then combine these partial results to get the global value. This
condition may take several forms. The strongest one we will present is asso-
ciativity. Other weaker formulations will also be presented, namely decompos-
ability, autodistributivity, bisymmetry, self-identity.

Definition 4 A : I2 → I is associative if, for all x ∈ I3, we have

A
(
A(x1, x2), x3

)
= A

(
x1, A(x2, x3)

)
. (1)

As examples of associative functions recall Min, Max, Σ, Π, PF , PL. Func-
tions like AM and GM are not associative. In fact, associativity is a very strong
and rather restrictive property, especially together with continuity. Therefore
sometimes some modifications of associativity preserving its advantages (from
the computational point of view) and extending the freedom in the choice of
A(n), n > 2, are introduced.

Definition 5 A : ∪n>1In → I is decomposable if A(x) = x for all x ∈ I and if

A(x1, . . . , xk, xk+1, . . . , xn) = A
(
k · A(x1, . . . , xk), (n− k) · A(xk+1, . . . , xn)

)

for all integers 0 6 k 6 n, with n > 1, and all x ∈ In.

By considering k = 0 (or k = n), we see that any decomposable function
is range-idempotent. It follows that decomposability means that each element
of any subset of consecutive elements from x ∈ In can be replaced with their
partial aggregation without changing the global aggregation. Decomposability
also implies that the global aggregation does not change when altering some
consecutive values without modifying their partial aggregation.

Definition 6 A : I2 → I is bisymmetric if for all x ∈ I4, we have

A
(
A(x1, x2), A(x3, x4)

)
= A

(
A(x1, x3), A(x2, x4)

)
.

In a certain respect, it has been used as a substitute for associativity and
also for symmetry.

Depending on the kind of scale which is used, allowed operations on values
are restricted. For example, aggregation on ordinal scales should be limited
to operations involving comparisons only, such as medians and order statis-
tics, while linear operations are allowed on interval scales. To be precise, a
scale of measurement is a mapping that assigns real numbers to objects being
measured. Stevens defined the scale type of a scale by giving a class of admis-
sible transformations, transformations that lead from one acceptable scale to
another.

The neutral element is again a well-known notion coming from the area of
binary operations.



Definition 7 Let A : ∪n>1In → I be an aggregation function. An element
e ∈ I is called a neutral element of A if, for any i ∈ {1, . . . , n} and any x ∈ In
such that xi = e, then

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn).

The neutral element can be omitted from aggregation inputs without in-
fluencing the final output. In multi-criteria decision making, assigning a score
equal to the neutral element (if it exists) to some criterion means that only the
other criteria fulfillments are decisive for the global evaluation.

Further properties of aggregation functions are related to additivity and its
modifications.

Definition 8 A : In → I is

(i) additive if
A(x + x′) = A(x) + A(x′)

for all x,x′ ∈ In such that x + x′ ∈ In;

(ii) is minitive if
A(x ∧ x′) = A(x) ∧ A(x′)

for all x,x′ ∈ In;

(iii) is maxitive if
A(x ∨ x′) = A(x) ∨ A(x′)

for all x,x′ ∈ In.

We now present the concept of comonotonicity. Two vectors x,x′ ∈ In are
said to be comonotonic if there exists a permutation π ∈ Π[n] such that

xπ(1) ≤ · · · ≤ xπ(n) and x′π(1) ≤ · · · ≤ x′π(n).

Thus π orders the components of x and x′ simultaneously. Another way to
say that x and x′ are comonotonic is that (xi − xj)(x′i − x′j) ≥ 0 for every
i, j ∈ {1, . . . , n}. Thus if xi < xj for some i, j then x′i ≤ x′j .

Definition 9 A : In → R is comonotonic additive if

A(x + x′) = A(x) + A(x′)

for all comonotonic vectors x,x′ ∈ In such that x + x′ ∈ In.



3 Classes of aggregation functions

Usually aggregation functions are divided into three classes, each possessing
very distinct behavior: conjunctive functions, disjunctive functions and internal
functions.

Definition 10 A : In → I is conjunctive if

A(x) 6 min xi (x ∈ In).

Conjunctive functions combine values as if they were related by a logical
“and” operator. That is, the result of combination can be high only if all the
values are high. t-norms are suitable functions (defined on [0, 1]n) for doing
conjunctive aggregation. However, they generally do not satisfy properties
which are often requested for multicriteria aggregation, such as idempotence,
scale invariance, etc.

Definition 11 A : In → I is disjunctive if

A(x) > max xi (x ∈ In).

Disjunctive functions combine values as an “or” operator, so that the re-
sult of combination is high if at least one value is high. Such functions are, in
this sense, dual of conjunctive functions. The most common disjunctive func-
tions are t-conorms (defined on [0, 1]n). As t-norms, t-conorms do not possess
suitable properties for criteria aggregation.

Definition 12 A : In → I is internal if

min xi 6 A(x) 6 maxxi (x ∈ In).

Between conjunctive and disjunctive functions, there is a third category,
namely internal functions. They are located between min and max, which are
the bounds of the t-norm and t-conorm families. In multicriteria decision aid,
these functions are also called compensative operators. In fact, in this kind of
functions, a bad (resp. good) score on one criterion can be compensated by a
good (resp. bad) one on another criterion, so that the result of the aggregation
will be medium.

4 Continuity

We consider now the usual continuity of aggregation functions and its strength-
enings and weakenings.

Definition 13 F : In → R is a continuous function if

lim
x→x0

F(x) = F(x0) (x,x0 ∈ In).



The continuity property means that the small change of arguments (possible
minor error) will not cause a big output difference (output error). For non-
decreasing functions continuity can be characterized alternatively, see [9].

Proposition 14 For a non-decreasing function F : In → R the following are
equivalent

(i) F is continuous;

(ii) F is continuous in each coordinate, i.e., for every x ∈ In, i ∈ [n], functions
Fx,i : I → R given by

Fx,i(u) = F(x1, . . . , xi−1, u, xi, . . . , xn)

are continuous;

(iii) F has the intermediate value property, i.e., for all x,y ∈ In with x 6 y
and all c ∈ [F(x), F(y)], there exists z ∈ In, with x 6 z 6 y, such that
F(z) = c (here 6 denotes the classical Cartesian product partial order).

Stronger forms of continuity
Uniformly continuous functions

Definition 15 Let ‖ · ‖ : Rn → R+ be a norm and D ⊆ Rn. A function
F : D → R is called uniformly continuous on D if for every ε > 0 there exists
δ > 0 such that |F(x)− F(y)| < ε, whenever ‖x− y‖ < δ and x,y ∈ D.

Absolutely continuous functions

Definition 16 We say that F : [a, b] → R is absolutely continuous if for every
ε > 0 there exists a δ > 0 such that for any finite system of pairwise non-
intersecting intervals ]ai, bi[⊂]a, b[, i = 1, . . . , n, for which

∑n
i=1(bi − ai) < δ

the inequality
∑n

i=1 |F(bi)− F(ai)| < ε holds.

Every absolutely continuous function on a closed interval is continuous on this
interval. The opposite implication is not true, e.g., the function

F(x) =
{

x sin 1
x if x ∈ ]0, 1]

0 x = 0,

is continuous on [0, 1], but is not absolutely continuous on it.
The fundamental theorem of calculus is a part of the following

Theorem 17 Let F : [a, b] → R. Then the following are equivalent:

(i) There is an integrable real-valued function f such that

F(x) = F(a) +
∫ x

a

f(t) dt

for every x ∈ [a, b] .



(ii)
∫ x

a
F′(t) dt exists and is equal to F(x)− F(a) for every x ∈ [a, b].

(iii) F is absolutely continuous.

We extend the definition of absolute continuity on functions of more vari-
ables using Theorem 17.

Definition 18 A function F : In → R is absolutely continuous if and only
if its partial derivative ∂F(x1,...,xn)

∂x1...∂xn
exist almost everywhere and for any fixed

(a1, . . . , an) from the interior of In,

F(x1, . . . , xn) =
∫ (x1,...,xn)

(a1,...,an)

f(x1, . . . , xn) dx1 . . . dxn + F(a1, . . . , an),

where

f(x1, . . . , xn) =
∂F(x1, . . . , xn)

∂x1 . . . ∂xn

if the partial derivative exists, and else f(x1, . . . , xn) = 0.

Lipschitz condition
The continuity property can be strengthened into the well-known Lipschitz

condition.

Definition 19 Let ‖ · ‖ : Rn → R+ be a norm. If a function F : In → R
satisfies the inequality

|F(x)− F(y)| 6 c‖x− y‖ (x,y ∈ In), (2)

c ∈ ]0,∞[ , then we say that F satisfies Lipschitz condition (with respect to ‖·‖).
The greatest lower bound of constants c > 0 in (2) is the Lipschitz constant.

Remark 20 If a function F : In → R satisfies the inequality

|F(x)− F(y)| 6 c‖x− y‖α (x,y ∈ In),

where 0 < α ≤ 1 and c ∈ ]0,∞[ , then we say that F satisfies Lipschitz condition
(with respect to ‖ · ‖) of order α. In the case 0 < α < 1 the condition (2) is also
called Hölder condition of order α.

As an important example we have the norm ‖x‖p := (
∑n

i=1 |xi|p)1/p
, for

some p ∈ [1,∞[ , and ‖x‖∞ := max |xi| is the Chebyschev norm. By convention,
when the norm ‖ · ‖ is not specified, the L1 norm on Rn, i.e., ‖x‖1 =

∑n
i=1 |xi|,

is taken into account. Moreover, we can stress the actual value of constant
c in (2) when speaking that it is c-Lipschitz. c-Lipschitzianity of aggregation
function allows to estimate the relative output error in comparison with input
errors

|F(x)− F(y)| ≤ cε



whenever ‖x − y‖ ≤ ε for some ε > 0. As a consequence of the fact that we
have for p ∈ [1,∞[ the inequalities

‖x‖p ≤ ‖x‖1 ≤ n1− 1
p ‖x‖p, and ‖x‖1 ≤ n‖x‖∞ ≤ n‖x‖p

and
‖x‖q ≤ ‖x‖p whenever q ≥ p

for all x ∈ In we obtain the following result.
The Lipschitz property of functions is defined standardly on domains where

the norm cannot achieve the value infinity. Formally it can be defined also on In
for an unbounded interval I, however, if I is closed then the Lipschitz property
does not imply continuity, in general. For example, the weakest aggregation
function F on [0,∞]n is Lipschitz for any norm, however, it is not continuous.

In all cases the Lipschitz property implies the absolute continuity, so it is
stronger property, e.g., log x on ]0, 1] is absolutely continuous but not Lipschitz
of any order. Also, we have the following connection.

Proposition 21 If, in Definition 16 of an absolutely continuous function, the
requirement that the pairwise intersections of intervals are empty is discarded,
then the function will satisfy Lipschitz condition with some constant.

Proposition 22 Let [a, b] be a bounded interval. The smallest and the greatest
aggregation function 1-Lipschitz with respect to the norm ‖ · ‖p are given by
A

(n)
∗ : [a, b]n → [a, b],

A
(n)
∗ (x) := max(b− ‖nb− x‖p, a),

and A(n)∗ : [a, b]n → [a, b],

A(n)∗(x) := min(a + ‖x− na‖p, b),

respectively.

Each Lipschitz function (with respect to any norm ‖ · ‖) for I not closed
infinite interval is continuous. The converse is false in general.

Example 23 The geometric mean GM on the interval [0, 1]n or on the interval
[0,∞[n is a continuous function which is not Lipschitz.

Example 24 The arithmetic mean AM : ∪n∈NIn → R is 1-Lipschitz indepen-
dently of the interval I. Extended aggregation function Q : ∪n∈N[0, 1]n → [0, 1]
given by

Q(x1, . . . , xn) := Πn
i=1x

i
i

is not Lipschitz, though each Q(n) is Lipschitz (the best Lipschitz constant cn

for Q(n) is cn = n).



Weaker forms of continuity

Definition 25 F : In → R is called lower semi-continuous or left-continuous
if, for all (x(k))k∈N ⊂ (In)N such that ∨kx(k) ∈ In, it holds

∨

k

F(x(k)) = F

(∨

k

x(k)

)
.

Definition 26 F : In → R is called upper semi-continuous or right continuous
if, for all (x(k))k∈N ⊂ (In)N such that ∧kx(k) ∈ In, it holds

∧

k

F (x(k)) = F

(∧

k

x(k)

)
.

5 Non-additive measures

Let us consider I = [0, 1] and N = {1, . . . , n}. A set function m on N is a
function from 2N to R. We have already noted above the bijection between
vertices of [0, 1]n and subsets of N . Hence a subset A ⊆ N is equivalently
denoted by (1A, 0Ac) ∈ [0, 1]n, or by its characteristic function 1A defined
over N . We denote x = (x1, . . . , xn). Using the above equivalence, any set
function m bijectively corresponds to a pseudo-Boolean function fm : {0, 1}n →
R by fm(x) = m(Ax) for all x ∈ {0, 1}n, where Ax = {i ∈ N | xi = 1}.
Conversely, to any pseudo-Boolean function f corresponds a unique set function
mf such that mf (A) := f(1A, 0Ac). Pseudo-Boolean functions are widely used
in operations research. Cooperative game theory is devoted to a particular
class of set functions, called transferable utility games in characteristic form.
We will call them games or non-additive measure for simplicity. In the context
of game theory, the set N is the set of players. A game m : 2N → R is a set
function satisfying m(∅) = 0. Useful examples of games are unanimity games.
For any A ⊆ N , the unanimity game uA on N is defined by:

uA(B) :=

{
1, if B ⊇ A

0, otherwise.

Note that u∅ is not a game since u∅(∅) = 1.
A capacity m : 2N → R+ is a game such that µ(A) ≤ µ(B) whenever

A ⊆ B (monotonicity). A capacity is normalized if µ(N) = 1. Capacities are
monotonic games, and were introduced originally by Choquet in 1953. They
were rediscovered by Sugeno in 1974 under the name fuzzy measure.

Important connection with aggregation functions can be described in the
following way. Suppose we use as an aggregation function the weighted arith-
metic mean

WAMw(x) =
w1x1 + · · ·+ wnxn

w1 + · · ·+ wn



with respect to some weight vector w ∈ [0, 1]n. It is easy to relate w to
the values taken on by WAMw, using particular vectors in [0, 1]n, namely 1i:
WAMw(1i) = wi for all i ∈ N. This means that the value of function WAMw

on [0, 1]n is solely determined by its value at the endpoints of the n dimen-
sions, which represents the weight of each dimension. In fact, the exact way
WAMw(x), x ∈ [0, 1], is determined from WAMw(1i), i = 1, . . . , n, is linear
interpolation. One may construct more complicated aggregation functions A
by using more points in [0, 1]n to determine A. A natural yet simple choice
would be to take all vertices of [0, 1]n, namely {1A}A⊆N . These include the
previous endpoints of dimensions. Doing so, we have defined a set of weights
{wA}A⊆N , by

Aw(1A) = wA, A ⊆ N.

It remains to construct Aw on [0, 1]n by some means (e.g., linear interpolation),
using these points. By analogy with the previous case, wA is the weight of the
subset A of dimensions.

In the case of WAMw, the weight vector had no peculiar property, beside
non-negativeness and normalization

∑
i wi = 1. If weights are assigned to sub-

sets of dimensions, then some properties are natural, especially if dimensions
represent criteria or attributes, or individuals (voters, experts). In this frame-
work, x ∈ [0, 1]n is a vector of scores, and Aw(x) is the aggregated overall score,
reflecting the score of each criterion or individual. Hence, Aw(1A, 0Ac) is the
overall score of an object having the maximal score for all criteria (individu-
als) in A and the minimal score otherwise, so that the following properties are
natural:

(i) w∅ = 0, since the object (1∅, 0N ) is the worst possible;

(ii) wN = 1, since the object (1N , 0∅) is the best possible;

(iii) wA ≤ wB whenever A ⊆ B, since object (1B , 0Bc) is at least better on
one dimension than (1A, 0Ac).

Considering w as a set function on N , what we have defined above is nothing
else than a capacity.

Let m be a set function on N , i.e., an element of R2N

. A transform is any
mapping T : R2N → R2N

. The transform is linear if for any m1,m2 in R2N

and any λ1, λ2 ∈ R it holds T (λ1m1 + λ2m2) = λ1T (m1) + λ2T (m2), and it is
invertible if T−1 exists. There are several useful invertible linear transforms of
set functions. The best known one is the Möbius transform

µ(A) =
∑

B⊆A

(−1)|A\B|m(B).

µ is said to be the Möbius transform (or Möbius inverse) of m. It is a linear
and invertible transform, and µ(∅) = m(∅). The Möbius transform has been
rediscovered many times. In the field of pseudo-Boolean functions, it appears as



coefficients in the multilinear polynomial form of any pseudo-Boolean function
f :

f(x) =
∑

T⊆N

[
aT

∏

i∈T

xi

]
, ∀x ∈ {0, 1}n.

In the field of cooperative game theory was found by Shapley in the form

µ(A) =
∑

B⊆N

mBuB(A), ∀A ⊆ N,

i.e., any game (in fact, any set function) can be expressed in a unique way by
unanimity games.

6 The Benvenuti integral

We consider a general integral with respect to a capacity, which cover many
well-known integrals. Benvenuti integral is based on the chain representation
(comonotone representation) of input vectors and two binary operations ⊕ and
¯. For a constant b ∈ ]0,∞] , operation ⊕ : [0, b]2 → [0, b] is supposed to
be a continuous t-conorm, i.e., an associative continuous binary aggregation
function with neutral element 0. For another constant c ∈ ]0,∞] (the case
c = b is possible and most frequent case) operation ¯ : [0, b]× [0, c] → [0, b] is a
non-decreasing binary operation which is right-distributive with respect to ⊕,
i.e.,

(u⊕ v)¯ w = (u¯ v)⊕ (v ¯ w)

for all u, v ∈ [0, b] and w ∈ [0, c] . Moreover, define a binary operation ª :
[0, b]2 → [0, b] associated to ⊕ by

uª v = inf{t ∈ [0, b] | v ⊕ t ≥ u}.

Definition 27 For a fixed n ∈ N, let m : 2N → [0, c] be a monotone set
function (capacity). Benvenuti integral B⊕,¯

m : [0, b]n → [0, b] is given by

B⊕,¯
m (x) := ⊕n

i=1(x(i) ª x(i−1))¯m(A(i)),

with σ a permutation on N such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n), with the
convention xσ(0) := 0, and Aσ(i) := {σ(i), . . . , σ(n)}.
Many important special cases are in the following example.

Example 28 (i) Let b = c = ∞,⊕ = +,¯ = · on [0,∞]. Then

B+,·
m (x) = Cm(x) =

n∑

i=1

(xσ(i) − xσ(i−1))m(Aσ(i)),

reduces on the Choquet integral.



(ii) Let b = c = 1,⊕ = ∨,¯ = ∧. Then

B∨,∧
m (x) = Sm(x) :=

n∨

i=1

(
xσ(i) ∧m(Aσ(i))

)
,

reduces on Sugeno integral.

(iii) Let b = c = 1,⊕ = SP (probabilistic sum), i.e., u ⊕ v = u + v − uv, and
¯ : [0, 1]2 → [0, 1] is a uninorm generated by a multiplicative generator
ϕ : [0, 1] → [0, 1] given by ϕ(x) = − log(1− x), i.e.,

u¯ v = exp(− log(1− u) log(1− v)),

and the neutral element of ¯ is e = 1− exp(−1). Then

B⊕,¯
m (x) = ϕ−1 (Cϕ◦m(ϕ ◦ x)) ,

i.e., Benvenuti integral is a ϕ-transform of the Choquet integral.

(iv) For ⊕-measure m the integral B⊕,¯
m reduces on the pseudo-integral, see

[11].

(v) Let b = c = 1,⊕ = ∨,¯ = ·. Then B∨,·
m (x) = maxi(wi · xi), where

xi = f(i), gives the Shilkret integral (where the integral was considered
with respect to SM-measures).

Recall some general properties of Benvenuti integral.

Theorem 29 (i) The Benvenuti integral B⊕,¯
m is monotone.

(ii) If b = c and ¯ is associative, then B⊕,¯
m is ¯-homogeneous, i.e.,

B⊕,¯
m (a¯ u) = a¯B⊕,¯

m (u)

for all a ∈ [0, b] .

(iii) If ¯ has a left neutral element, i. e., e¯ u = u for all u ∈ [0, b] , then

B⊕,¯
m (e · 1A) = m(A).

(iv) If ¯ has a right neutral element, i. e., u ¯ e = u for all u ∈ [0, b] , and
m(N) = e, then

B⊕,¯
m (u) = u

for all u ∈ [0, b] .

For more details, especially concerning the Benvenuti integral on abstract
spaces, we recommend [2].
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