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Abstract: Fuzzy rule interpolation-based reasoning methods are the most common choices 
for cases when the applied rule base is not dense. This paper presents a new technique 
called LESFRI, which is based on the method of least squares. Its central idea is the 
conservation of the shape type specific to a fuzzy partition. The method has low 
computational complexity. 
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1 Introduction 

Rule-based fuzzy systems can be divided into two groups depending on whether 
they require or not the dense character of a rule base. The classical fuzzy 
reasoning methods like Zadeh’s, Mamdani’s, Larsen’s or Sugeno’s belong to the 
first group. Having an observation that do not intersect or at least overlap partially 
any of the rule antecedents their response is either a ‘do nothing’ or the last cached 
valid result. 

In several practical applications it is required from the system to give a reasonable 
output even in such cases. The members of the second group of fuzzy inference 
techniques were developed to fulfil the above discussed demand by the help of 
approximate approaches. Generally they are based on fuzzy rule interpolation 
and/or extrapolation. For the sake of simplicity further on they are referred as 
Fuzzy Rule Interpolation (FRI) methods. One can distinguish two separate 
approaches in the way of they are calculating the conclusion. 
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The members of the first subgroup determine the conclusion directly from the 
observation taking into consideration the nearest two or more rules that surround 
the observation. Relevant members of this subgroup are the α-cut-based 
interpolation (KH) proposed by Kóczy and Hirota in [13], which was the first 
developed technique, the modified α-cut-based interpolation (MACI) [17] 
introduced by Tikk and Baranyi, the fuzzy interpolation based on vague 
environment (FIVE) [11] developed by Kovács and Kóczy, its extended version 
suggested by Kovács in [12], the improved fuzzy interpolation technique for 
multi-dimensional input spaces (IMUL) [18] proposed by Wong, Gedeon and 
Tikk, the interpolative reasoning based on graduality (IRG) [4] introduced by 
Bouchon-Meunier, Marsala and Rifqi, the method based on the conservation of 
the relative fuzziness (CRF) [14] proposed by Hirota, Kóczy and Gedeon. 

The members of the second subgroup follow a two-step approach whose basic 
concept was formalized by the Generalized Methodology of fuzzy rule 
interpolation (GM) introduced by Baranyi et al. in [3]. They determine first a new 
rule in the position of the observation and calculate the conclusion by its help. 
Relevant members of this subgroup are the technique group suggested by Baranyi, 
Kóczy and Gedeon in [3], the Interpolation with Generalized Representative 
Values (IGRV) [5] developed by Huang and Shen, the technique proposed by 
Jenei in [6], and the method FRIPOC introduced by Johanyák and Kovács in [7]. 
The solvability of fuzzy relation equations as the solvability of interpolating and 
approximating fuzzy functions with respect to a given set of fuzzy rules was 
studied by Perfilieva in [15]. 

The common ground of all the methods belonging to the two subgroups is that 
they suppose the existence of regularity between the linguistic terms of a fuzzy 
partition regardless of it is part of an antecedent or consequent universe of 
discourse. In a similar way they assume regularity in the case of the rules of the 
knowledge base, too. 

In several practical cases all linguistic terms of a fuzzy partition belong to the 
same shape type and they have the same height. Having such a system it seems to 
be a natural requirement that the calculated conclusion and also the antecedent and 
consequent sets of the interpolated rule adhere to this regularity as well. 

However, several FRI methods do not fulfil this requirement. Therefore we have 
developed a new inference technique especially for these purposes. It is called 
LESFRI. 

2 The Method LESFRI 

The method LESFRI (LEast Squares-based Fuzzy Rule Interpolation) belongs to 
the second subgroup of FRI techniques. In order to simplify the further 
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calculations first the range of all partitions is normalized to the interval [0,1]. Due 
to the fact that LESFRI is an α-cut-based method the characteristic height of all 
partitions should be the same. If this condition is not met a normalization of the 
affected partitions is needed as an additional preparatory work. 

LESFRI essentially follows the concepts laid down in [3]. It assumes that a better 
approximation of the real relation between the antecedent and consequent 
universes can be attained by determining first an auxiliary rule in the position of 
the observation and than calculating the conclusion by firing this rule. 
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Figure 1 

Reference point types 

The above mentioned coincidence between the position of the antecedent and 
observation sets in each dimension can be interpreted thanks to the reference 
point-based evaluation of the location of the linguistic terms. The selection of the 
type of this point introduces a free parameter into the method. However, it is 
worthy of note that the same type of reference point have to be used for each set in 
each dimension in the frames of a fuzzy system. Usual choices are the centre of 
the core (RPCC) [3][4][7], the centre of the support (RPSC) [4], the centre of gravity 
(RPGC) [5] and the unweighted or weighted average of the abscissas of the 
characteristic (break) points of the shape (RPUAV, RPWAV) [5]. Figure 1 presents the 
listed reference point types in case of a trapezoid shaped fuzzy set. 

The centre of the core offers the most advantages among them. It contains 
information about the middle one from the most relevant – having the maximal 
membership value – elements of the set and facilitates the division of the shape of 
a linguistic term into two flanks that can be calculated separately. 

The distance between the fuzzy sets is measured as the horizontal distance 
between their reference points. Furthermore the use of a representative point 
simplifies the evaluation of the ordering of the sets. 

The first step of the method LESFRI, the interpolation of the new rule is achieved 
in three stages. 
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1 The antecedent sets are calculated in each dimension by a set interpolation 
technique called FEAT-LS. 

2 The position of the consequent sets is calculated in each consequent 
dimension using a crisp interpolation technique, which is an extended version 
of the Shepard interpolation. 

3 The shape of the consequent sets is determined by using the same set 
interpolation technique as in stage 1. 

The conclusion is produced in the second step by the help of the new rule. The 
difficulty of the task is created by the fact that in the general case the antecedent 
part of the new rule does not fit perfectly the observation in each input dimension. 
Therefore a special single rule reasoning technique is needed for the calculations. 

3 FEAT-LS 

Fuzzy Set Interpolation (FSI) aims the determination of a new linguistic term in a 
given point of a fuzzy partition called interpolation point. This means that the new 
fuzzy set is generated in such way that its reference point coincides with the 
interpolation point. The problem is called interpolation when the given point is 
situated between the reference points of the first and last linguistic terms. 
Otherwise it is called an extrapolation task. 

In case of two-step FRI methods an FSI technique is used for the calculation of the 
antecedent and consequent sets of the new rule. Thus the interpolation point is 
either the reference point of the observation or the reference point of the 
consequence in the current dimension. An FSI technique works only with one 
partition. Therefore the calculations in the different dimensions in both the 
antecedent and consequent cases can be done separately. 

In several applications all sets of a partition belong to the same shape type and the 
characteristic (break) points are also situated at the same α-level. In such cases it 
seems to be a natural condition on the new linguistic term to suit this regularity. 
Furthermore if one or more shape-pieces delimited by the characteristic points are 
linear it could be expected that the corresponding pieces of the new set to be linear 
as well. The latter expectation is also formulated in requirement 7 of the General 
conditions on rule interpolation methods introduced in [8]. 

The Fuzzy sEt interpolAtion Technique based on the method of Least Squares 
(FEAT-LS) was developed especially for these purposes. It is applicable for both 
of the problems interpolation and extrapolation. 

Most of the FSI methods (e.g. SCM [2]) seek for those two linguistic terms that 
surround the interpolation point supposing regularity between the sets of the 
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partition. Keeping on this way often a better set approximation can be obtained by 
taking into consideration all the linguistic terms of the partition. Although at first 
sight it could lead to increased computational complexity, but usually it is simpler 
to draw into calculations the whole bulk of the sets. It is because a fuzzy partition 
contains a small (generally smaller or equal to 11 [9][1]) number of linguistic 
terms. Besides this approach ensures extrapolation capability of the method as 
well. 
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Figure 2 

The original partition and the shifted linguistic terms 

As a first step all the sets of the partition are shifted horizontally in order to reach 
the coincidence between their reference points and the interpolation point. The left 
part of Figure 2 presents an example for a partition containing four linguistic 
terms and an interpolation point at xi=0.4. The effect of the shifting is presented 
on the right part of the figure. 

Figure 3 
The left flank with numbered characteristic points 

The shifting is not permanent. It is only used during the determination of the new 
set. Next the shape of the new linguistic term is calculated from the overlapped set 
shapes in a set form that belongs to the characteristic shape type of the partition 
(e.g. singleton, triangle, trapezoid, polygonal, etc). The calculations are done 
separately for the left and right flanks of the new set. In the followings only the 
case of the left flank is presented, the right flank is determined similarly. 
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During the calculations one has to determine only the abscissas of the 
characteristic points, the ordinate values are the same for all the sets of the 
partition. Proceeding on counter clockwise direction the first point is the reference 
point (see Fig. 3), which is determined by the interpolation point ( iL xx =0 ). For 
each remaining characteristic point we build the weighted sum of the squares of 
the differences between the abscissa of the new point and the abscissas of the 
corresponding points of the shifted linguistic terms 
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where L
jQ is the sum corresponding to the jth point of the left flank of the 

interpolated set, wl is the weighting factor of the lth linguistic term of the partition, 
L
ljx  is the abscissa of the jth point of the left flank of the lth set and L

jx  is the 

abscissa of the jth point of the left flank of the interpolated set. 

The weighting expresses that the sets situated originally in closer neighborhood of 
the interpolation point should exercise a higher influence than those situated 
originally in farther regions of the partiton. The simplest weighting factor is the 
reciprocal value of the distance, but there are some others in the literature that 
were developed for more or less analogue cases. The formula (2) has been chosen 
as the most suitable for the method FEAT-LS 
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where ( )i
l AAd , is the original distance between lth set and the interpolated one, 

p is a constant. The selection of the type of the weighting factor and the selection 
of its parameters gives tuning possibility to the system. 

There are two conditions on L
jx : it should yield a minimal L

jQ  value and it 

should avoid the arising of an abnormal set shape. The latter one can be expressed 
by the formula  

kjxx L
j

L
j ,11 =≤ − , (3) 

where k is the ordinal number of the last characteristic point of the left flank. 
Supposing that the first condition is fulfilled by all linguistic terms of the partition 
it can be proved that it is also fulfilled by the points calculated by the method of 
least squares. Thus results the formula 
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4 The Position of the Consequent Sets 

The second stage of the first step of the method LESFRI is the determination of 
the position of the fuzzy sets belonging to the consequent part of the new rule. It is 
calculated independently in each output dimension. Further on for better lucidity 
the index identifying the current output dimension is not indicated in the formulas. 

Each rule of the rule base can be represented as a point on a hyper-surface using as 
co-ordinates the reference points of the antecedent linguistic terms and the 
reference point of the rule consequent in the current output dimension. Figure 4 
presents the case of a system having two antecedent dimensions. The point 
outlined by a bullet on the surface (Fig. 4) symbolises the interpolated point on the 
hyper-surface corresponding to the reference points of the interpolated antecedent 
sets (RP(Ai

1) and RP(Ai
2)) and the reference point of the rule consequent (RP(Bi)). 
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Figure 4 

Hyper-surface representing the rules 

The task of the current stage can be defined as a problem of finding a point on the 
hyper-surface. Due to the sparse character of the rule base an na dimensional 
interpolation has to be done for irregularly spaced data, where na is the number of 
the antecedent dimensions. It can be expressed in general by the formula 
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where RP(Bi) is the reference point of the interpolated consequent set, RP(Ai
j) is 

the reference point of the interpolated antecedent set in the jth input dimension and 
ℜ  is the rule base. The function should pass through the known points of the 
hyper-surface. We suggest the use of an interpolation function that is an extension 
and adaptation of the Shepard interpolator [16] for the case of arbitrary number of 
antecedent dimensions. 

The antecedent part of each rule can be thought of as a point in the antecedent 
hyper-space. Its co-ordinates are given by the reference points of the sets 
belonging to it. The point corresponding to the antecedent of the interpolated rule 
is at the same time also the representing point of the observation. Further on the 
Euclidean distance between these points is used as the measure of the closeness of 
the antecedents and by this means also the closeness of the rules. The proposed 
interpolation function determines the reference point of the conclusion as a 
weighted average of the reference points of the consequent sets of the known rules 
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where N is the number of the rules, l denotes the current rule, sl is the weight 
attached to the lth rule. 

The rules whose antecedent part is in the closer neighbourhood of this point 
should exercise higher influence than those situated farther. Therefore the 
weighting factor is a distance function. Shepard in [16] proposed several variants 
of the weighting factors for its interpolation function. The first of them, which 
applies the reciprocal value of the square of the distance, was chosen to be applied 
considering it as the one having the lowest computational complexity. Its adapted 
version is the formula 
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where RAi is the antecedent of the interpolated rule, RAl is the antecedent of the lth 
rule, RP(Ai

j) is the reference point of the interpolated antecedent in the jth 
dimension (identical with the reference point of the observation in the jth 
dimension), RP(Alj) is the reference point of the antecedent set of the lth rule in the 
jth dimension and na is the number of the antecedent dimensions. 
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5 SURE-LS 

The Single RUle REasoning based on the method of least squares aims the 
determination of the conclusion using the observation and the new rule. In the 
general case differences could exist between the shape of the observation sets and 
the shape of the corresponding antecedent linguistic terms. Therefore the task is to 
modify the form of the rule consequents in each output dimension by taking into 
consideration the differences on the antecedent side. 

SURE-LS is developed as a complement of FEAT-LS. Therefore during its 
application is assumed that in case of each dimension only one shape type is 
present and the characteristic points are situated at the same α-levels. Due to the 
possible diversity of the applied α-level collections first a new set of α-levels (Λ) 
is compiled that contains all the levels used in antecedent and consequent 
dimensions 
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where a
jΛ  is the set of α-levels in the jth antecedent dimension, c

kΛ  is the set of 

α-levels in the kth consequent dimension, na and nc are numbers of the antecedent 
and consequent dimensions. 

The rest of the calculations are done separately for the left and right flanks of the 
conclusion sets. Further on only the case of the left flank is presented. The right 
flank is calculated similarly. Next the difference ( aL

jdα ) is calculated between the 

antecedent and observation sets for each α-level and for each input dimension 

{ } { }∗−= j
i
j
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where i
jAα is the α-cut of the antecedent set of the interpolated rule in the jth input 

dimension, ∗
jAα is the α-cut of the observation set in the jth input dimension. 

Hereupon the weighted average difference ( aLadα ) is calculated for each α-level 
by the formula 
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where wej is the weighting factor of the jth antecedent dimension. This weighting 
factor offers a possibility to take into consideration each input state variable with 
different importance. 

The following part of the calculations is done separately for each output 
dimension. Thus it can also be parallelized. Further on the case of the kth 
consequent dimension is presented. For better lucidity the index identifying the 
current output dimension is not indicated in the formulas. 

The basic idea of the method is the conservation of the weighted average 
difference measured on the antecedent side by considering the same difference 
between the consequent and conclusion sets as the aLadα  at the same α-level 

{ } { } aLicL adBBd αααα =−= ∗infinf , (10) 

where iBα  is the consequent set of the interpolated rule and ∗
αB  is the conclusion. 

There are two important conditions to be met by the result: (1) the shape should 
adhere to the characteristic shape type of the current consequent partition and (2) 
abnormal set shapes should be avoided. In order to met the second condition the 
points defining the conclusion have to be situated on the left side of the reference 
point. Thus the formula describing the collection of the points is the following 

{ } { } ( )( )∗∗ −= BRPadBB aLi ,infmininf ααα . (11) 

The geometric form resulting from binding by lines the points obtained in (11) 
generally does not fulfil the shape criterion. Threfore the method of least squares 
is applied to find the flank that best fits the calculated points. 

Figure 4 
The left flank of a triange shaped conclusion 

Hereupon the rest of the calculations depends on the characteristic shape of the 
current output partition. For example in the singleton case the conclusion will be a 
singleton placed in the reference point defined in the previous section. In the 
triangle case (Fig. 4) one vertex is given by the reference point and the 
characteristic height of the partition. The other one corresponding to the left end of 
the base of the triangle is calculated by the formula 
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where CB∗  is the corrected conclusion set, h is the characteristic height of the 

partition and Λn  is the number of α-levels. 

Conclusions 

FRI-based inference techniques ensure the adequate conclusions even in case of 
sparse rule bases. The method LESFRI introduced in this paper follows the two-
step concept. First it interpolates an auxiliary rule in the position of the 
observation than determines the conclusion by the help of the new rule. Its main 
advantages are (1) its capability to produce new linguistic terms that fit into the 
regularity of the original partitions and (2) its low computational complexity. 
Being an α-cut-based method its application is restricted to the case when the 
height of all sets is the same. In this paper only the case of piece-wise linear 
membership functions was presented. The case of smooth set shapes is subject of 
farther research work. 

The method is implemented in Matlab and can be downloaded from [19]. This 
website is dedicated to a fuzzy rule interpolation Matlab toolbox development 
project (introduced in [10]) aiming the implementation of various FRI techniques. 

Acknowledgement 

This research was supported by GAMF Faculty Kecskemét College grant no: 
1N076/2006. 

References 
[1] Ali, Y. M., Zhang, L.: A Methodology for Fuzzy Modeling of Engineering 

Systems, Fuzzy Sets and Systems, 118/2001, pp. 181-197 

[2] Baranyi, P., Kóczy, L. T.: A General and Specialised Solid Cutting Method for 
Fuzzy Rule Interpolation, In J. BUSEFAL, URA-CNRS, Vol. 66, Toulouse, 
France, 1996, pp. 13-22 

[3] Baranyi, P., Kóczy, L. T., Gedeon, T. D.: A Generalized Concept for Fuzzy 
Rule Interpolation. In IEEE Transaction On Fuzzy Systems, ISSN 1063-6706, 
Vol. 12, No. 6, 2004, pp. 820-837 

[4] Bouchon-Meunier, B., Marsala, C.; Rifqi, M.: Interpolative Reasoning Based 
on Graduality, In Proc. FUZZ-IEEE'2000, 2000, pp. 483-487 

[5] Huang, Z., Shen, Q: Fuzzy Interpolation with Generalized Representative 
Values, in Proceedings of the UK Workshop on Computational Intelligence, 
2004, pp. 161-171 



Zs. Cs. Johanyák et al. 
Fuzzy Rule Interpolation by the Least Squares Method 

 506 

[6] Jenei, S.: Interpolation and Extrapolation of Fuzzy Quantities revisited - (I). An 
Axiomatic Approach. Soft Computing, ISSN: 1432-7643, 5 (2001), pp. 179-
193 

[7] Johanyák, Zs. Cs., Kovács, Sz.: Fuzzy Rule Interpolation Based on Polar Cuts, 
In Computational Intelligence, Theory and Applications, Springer Berlin 
Heidelberg, 2006, ISBN 978-3-540-34780-4, pp. 499-511 

[8] Johanyák, Zs. Cs., Kovács, Sz.: Survey on Various Interpolation-based Fuzzy 
Reasoning Methods, Production Systems and Information Engineering Volume 
3 (2006), HU ISSN 1785-1270, pp. 39-56 

[9] Johanyák, Zs. Cs., Kovács, Sz.: A fuzzy tagsági függvény megválasztásáról, A 
GAMF Közleményei, Kecskemét, XIX. évfolyam (2004), ISSN 0230-6182, pp. 
73-84 

[10] Johanyák, Zs. Cs., Tikk, D., Kovács, Sz., Wong, K. W.: Fuzzy Rule 
Interpolation Matlab Toolbox – FRI Toolbox, Proc. of the IEEE World 
Congress on Computational Intelligence (WCCI'06), 15th Int. Conf. on Fuzzy 
Systems (FUZZ-IEEE'06), July 16-21, 2006, Vancouver, BC, Canada, pp. 
1427-1433, Omnipress 

[11] Kovács, Sz., Kóczy, L. T.: Application of an Approximate Fuzzy Logic 
Controller in an AGV Steering System, Path Tracking and Collision Avoidance 
Strategy, Fuzzy Set Theory and Applications, In Tatra Mountains 
Mathematical Publications, Mathematical Institute Slovak Academy of 
Sciences, Vol. 16, Bratislava, Slovakia, 1999, pp. 456-467 

[12] Kovács, Sz.: Extending the Fuzzy Rule Interpolation ‘FIVE’ by Fuzzy 
Observation, Theory and Applications, Springer Berlin Heidelberg, 2006, 
ISBN 978-3-540-34780-4, pp. 485-497 

[13] Kóczy, L. T., Hirota, K.: Approximate Reasoning by Linear Rule Interpolation 
and General Approximation. International Journal of Approximative 
Reasoning, 9:197–225, 1993 

[14] Kóczy, L. T., Hirota, K., Gedeon, T. D.: Fuzzy Rule Interpolation by the 
Conservation of Relative Fuzziness, Technical Report TR 97/2. Hirota Lab, 
Dept. of Comp. Int. and Sys. Sci., Tokyo Inst. of Techn., Yokohama, 1997 

[15] Perfilieva, I.: Fuzzy Function as an Approximate Solution to a System of Fuzzy 
Relation Equations. Fuzzy Sets and Systems, 147, 2004, pp. 363-383 

[16] Shepard, D.: A Two Dimensional Interpolation Function for Irregularly Spaced 
Data, Proc. 23rd ACM Internat. Conf., (1968) 517-524 

[17] Tikk, D., Baranyi, P.: Comprehensive Analysis of a New Fuzzy Rule 
Interpolation Method, In IEEE Trans. Fuzzy Syst., Vol. 8, June 2000, pp. 281-
296 

[18] Wong, K. W., Gedeon, T. D., Tikk, D.: An Improved Multidimensional α-cut-
based Fuzzy Interpolation Technique, In Proc. Int. Conf. Artificial Intelligence 
in Science and Technology (AISAT’2000), Hobart, Australia, 2000, pp. 29-32 

[19] http://fri.gamf.hu 


