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Abstract: The biological relevance of traditional and widely adapted edge-
detection algorithms with overlapping receptive field architectures has been
disproved in very recent papers of cognitive researchers. In the biologi-
cal vision system, cells responsible for visual acuity do not overlap in their
receptive fields. In order to reconcile differences between the biological vi-
sion system and the overlapping architecture used in classical convolution-
based image filtering algorithms, this paper introduces a novel tremor-based
retina model. The model takes into consideration data convergence, as well
as temporal properties of ganglion cells. Based on the evaluation of the
information-theoretical implications of the model, a hypothesis is formu-
lated, according to which involuntary tremors are used by the biological
vision system to compensate for the lack of overlaps through time. From
this follows a second hypothesis, which formulates that from an information
processing point of view, the functional role of involuntary eye-movements
extends to more than just the maintenance of action potentials. In support
of these hypotheses, the article discusses the model’s biological relevance.
Numerical simulations are also presented.

1 Introduction
The most prevalent image-filtering artificial receptive fields used to-
day, such as Laplace and Sobel operators, work reliably only when
assuming a convolution-based receptive field architecture with over-
laps. Using these edge-filtering without any overlap in receptive



fields results in a vast number of undesirable blind spots.

Recent findings in the research of retinal physiology suggest that re-
ceptive fields of the same types of mammalian ganglion cells barely
overlap in the fovea [1, 6]. The model proposed in this paper uses
a non-overlapping receptive field architecture enhanced with artifi-
cial tremors (rapid, involuntary eye movements) in order to make up
for losses in information. The image is moved around randomly at
a steady rate, thus an overlap is achieved between receptive fields
through time. Aggregating responses of such artificial ganglion cells
at given time intervals produces an effect similar to that observed
when using overlapping receptive fields, but computation time and
the amount of handled information are greatly reduced. The positive
effects of the model can be used efficiently in real-time systems with
demanding time constraints.

The paper is structured as follows: in an introductory section, an
overview is given on the biological elements which served as an
inspiration for this model. Further sections treat the details of the
model. Test results and applications are also presented.

2 Biological Overview
The state of a nerve cell in the biological vision system is affected by
every photoreceptor cell that provides it with input (either directly
or indirectly). This set of cells providing input is referred to as the
receptive field of the nerve cell. The structure of receptive fields can
be observed from the firing patterns of cells when they are stimulated
in an artificial environment.

The structure of the most common kinds of receptive fields in the
fovea (the central area of the retina responsible for image contouring)
is center-surround. The intensity of incoming light is reflected by
the membrane potentials of photoreceptor cells (rods and cones) [7].
Photoreceptor cells providing input to the center of receptive fields
provide excitatory (or inhibitory) input, while those providing input
to the periphery are responsible for inhibitory (or excitatory) input.



Such a structure leads to higher-order ganglion cells being able to
be depolarized only when the light intensity reaching the center of
the receptive field differs from the light intensity transmitted to the
periphery.

2.1 Non-Overlapping Receptive Fields
For a long time, experiments have shown extensive overlaps between
receptive fields on the retina. However, when comparing the number
of axons of photoreceptor cells to the number of axons in the optic
nerve, it was discovered that the 130 million axons of rods and cones
are condensed into 1.2 million axons in the optic nerve. Because of
this fact, it was assumed that the retina performs some kind of infor-
mation compression [4].

With the evolution of experimental methods, it was possible to make
a distinction between many kinds of ganglion cells. Devries and Bay-
lor [2] were able to distinguish between 11 kinds of ganglion cells,
based on their receptive fields and response characteristics. Different
kinds of ganglion cells provide different kinds of information, such
as contour information, intensity information, motion information,
as well as information on uniformly lighted image segments. It was
also shown that receptive fields of ganglion cells of the same type do
not overlap in the central fovea; the center of these receptive fields
are located at a distance of one diameter. These measurements were
confirmed by Packer and Dacey [6].

Because of the lack of overlaps between receptive fields in the fovea,
only intensity transitions that fall in the center of the receptive fields
can be detected at any given time. The computational model pro-
posed in this paper provides a possible explanation to how humans
are nevertheless capable of detecting contours.

2.2 Role of Involuntary Eye Movements
The three major kinds of involuntary eye movements that occur dur-
ing fixation are microsaccades, drifts and tremors (also sometimes



referred to as nystagmuses) [5, 3].

Of the three eye movements, later sections of this paper concentrate
on tremors. Tremors are involuntary, rhythmic oscillations of the eye
that have frequencies of about 90 Hz and amplitudes of roughly the
diameter of a cone on the fovea (therefore the diameter of the small-
est of photoreceptor cells). There is currently no hypothesis on the
functional role of tremors, however, artificially eliminating tremors,
researchers have found that vision faded away.

The model for edge-detection proposed in this paper uses non-overlapping
receptive fields, but also incorporates tremors in order to achieve the
effects of overlapping receptive fields through time. It will be shown
that besides following the structure of human visual perception, the
model accounts for the 130:1 information reduction ratio character-
istic to the pathway between photoreceptor cells of the retina and
ganglion cells [8].

3 Tremor-Based Retina Model
In order to achieve its goal, the proposed edge-filtering model uses
artificial receptive fields that are structurally similar to those found
on the retina. However, unlike the human vision system, the current
implementation of the model uses constant-sized, 3-by-3 artificial
receptive fields. This approximation is justified because in this case
only foveal receptive fields are modeled, as the model is used for the
filtering of edges in still images, not for detecting abrupt temporal
changes in moving images.

3.1 Receptive Field Structure
Receptive fields are represented by two-dimensional matrices (as in
many previous models), each matrix value representing a weight with
which the corresponding stimulus is multiplied. The configuration
of weights depends on the type of receptive field being modeled; on-
centered fields have positive values in the central area, surrounded by



Figure 1: Mathematical approximation of biological receptive fields
used in the model

all negative weights, while off-centered fields contain inverted values
with respect to its on-centered counterpart.
The weighting used in this model approximates an operator that cal-
culates the second derivative of the image, and in this respect, resem-
bles the Laplace-operator (Figure 1). To demonstrate the necessity of
overlaps in receptive fields, figure 2 shows an edge-filtered image us-
ing the approximated Laplacian operator, as well as the case where
receptive fields are used in a non-overlapping manner. It is clear that
the lack of overlaps results in a deteriorated image; certain sections of
line segments are either extremely blurred, or are completely miss-
ing. While the model takes into account the convergence between
photoreceptor cells and ganglion cells by yielding an output of 1/9-
th the size of the input (there are no overlaps between the receptive
fields used, therefore each output corresponds to a disjoint 3-by-3
portion of the image), it does not incorporate temporal properties of
ganglion cells. Involuntary eye-movements are also disregarded.



Figure 2: The image on the top was obtained with overlapping re-
ceptive fields, while the one on the bottom was obtained using non-
overlapping receptive fields. The losses in information are clear.

3.2 Temporal Model of Ganglion Cell Responses Used
in the Tremor Based Retina Model

Ganglion cells can be categorized not only by their receptive fields,
but also based on the temporal properties of their responses.

Ganglion cells in the fovea generally produce increased activity when
stimulated, but when the stimulus disappears (or even if the stimulus
is kept alive), their activity only gradually decreases until it reaches
0. However, if for some reason, stimulating effects increase, the out-
put of ganglion cells increases even more, and only declines to 0 after
a certain amount of time has passed.

The stochastic response properties of ganglion cells are approximated
using a sliding window function. This solution conserves the essence
of functionality, but at the same time ensures that unnecessarily com-
plex computations are not brought into the model. The modeled gan-
glion cells produce the sum of their inputs, and hold their outputs for
T time units. If, during this time, their inputs are stimulated even
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Figure 3: Temporal response characteristics of the modeled ganglion
cells.

more, then their output will increase. Otherwise, after T time units,
the output level returns to 0 (figure 3).

3.3 Model Incorporating Tremors
The weighting of the 3-by-3 matrices used to model receptive fields,
can be seen in figure 1. The sets of pixels seen by each receptive field
are disjoint, and their union covers the whole image. Each ganglion
cell computes the sum of its inputs, and produces its output accord-
ing to the window function described in 3.2.

The input image is in constant motion, compared to the stationary
receptive fields. This motion is a sequence of random jerks, with a
maximum amplitude of 2-3 pixels. In this way, receptive fields are
made to overlap through time.

At any given moment, the output of each ganglion cell is determined
as the maximum of the sum of its inputs throughout the previous T
time units. Hence, the output of each cell is characterized by the
largest change in contrast during T units.
In mathematical terms, the response of each artificial ganglion cell is:

ED(Im,Rs, A,T, t) = max
t−T<i≤t

{∆ ∗ fi(Im,Rs, A)} (1)

where Im is the intensity image, Rs is a random seed, A is the maxi-
mal amplitude of tremors, and T is the parameter characteristic to the



temporal function describing the response of the ganglion cell. ∆ is
the on-centered receptive field shown in figure 1, and fi is a function
that translates the image both horizontally and vertically by a random
number of pixels calculated using random seed Rs.

Typically, the maximum firing frequency of nerve cells is 40-50 Hz.
Such frequencies can only be perceived if firing is present for at least
two periods. In case of a firing rate of 40 Hz, this doubled period
time is 50 ms. This gives tremors with 90 Hz frequencies time for
4-5 periods. Therefore, in the model, the minimum value of T needs
to be 4-5 times the period of tremors.

The maximum value of T can be approximated using different con-
siderations. The visual system needs about 200-250 ms for the recog-
nition of a simple object at a subconscious level. During this time,
the amelioration of edge-detection performance is still worthwhile.
250 ms are enough for 22-23 tremor periods. Therefore, the maxi-
mum value of T is about 22-23 times the period of tremors.

From a biological point of view, the factor between T and the fre-
quency of tremors is between 4 and 22. Figure 4 shows the edge-
filtered image with respect to T. It can be clearly seen that the growth
in image quality slows down as T increases (figure 5).

It should not be considered as certainty that the most valid way of
modeling tremors is by using stochastic movements. If tremors were
not random, but composed of the superposition of several vibrations
having different frequencies, high-quality edge-filtered images could
be obtained even for lower values of T. In literature, there are rela-
tively small amounts of data on the composition of tremors, precisely
because no functionalities were attributed to tremors thus far.
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Figure 4: The edge-filtered image with respect to T. (A:T=1Tr,
B:T=5Tr, C:T=10Tr, D:T=20Tr, E:T=40Tr, F:T=100Tr, where Tr
is the number of tremor periods.)

Figure 5: The edge-filtered image quality with respect to the number
of tremor periods. By making the assumption that the model does not
introduce false edges to the result, image quality can be empirically
characterized by the percentage of non-white pixels compared to all
pixels in the image.
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Figure 6: Convergence / compression has a 9 : 1 ratio using 3-by-3
receptive fields.

4 Evaluation of the Model in Terms of Spa-
tial and Temporal Resolution

The model proposed in this paper can be of use in the early functional
stages of distributed intelligent systems with very simple computa-
tional units, primarily because of its accuracy and its low exigence of
memory. The output image provided by the model, while perfectly
capable of representing all relevant contour information, is reduced
in size by a ratio of 1:9 compared to the original input image (figure
6). In a possible future implementation modeling the variety of re-
ceptive field sizes on the retina, even greater size reductions could be
reached.

Due to the lack of overlaps in receptive fields, implementations of



the model are also faster than previous models. This is especially
true when analyzing moving images. A moving image can be sam-
pled, and in one possible scenario, each output image - provided at
every sampling interval - could contain the maximum of the last T
samples. Because of the adaptivity of this method, stable elements
of the image would be stable on the output (despite the fact that each
sample was only filtered once instead of T times), while rarely oc-
curring sudden changes in the input images would yield blurred im-
age portions similar to those perceived when a rapidly moving object
crosses the visual areas linked with peripheral receptive fields. In this
case, even though each sampled image would be only filtered once
(instead of T times), the same effect could be achieved through time,
because abrupt changes are very rare at high sampling rates. Hence,
computation times can be reduced by an order of magnitude.

5 Conclusion
A novel method for edge-detection was proposed. The model used
was based upon previous edge-filtering methods as well as recent
discoveries in retinal physiology.

Because of the non-overlapping receptive field architecture used, the
obtained edge-filtered image is reduced in size compared to the orig-
inal image. The model does not take into account the fact that recep-
tive fields in the biological vision system have varying sizes. An en-
largement of peripheral receptive field areas in terms of pixels would
approximately account for the 130:1 reduction ratio present in the
human vision system.

In the evaluation of the model, two hypotheses were formulated. Ac-
cording to the first one, involuntary tremors play a crucial role in
causing overlaps in otherwise non-overlapping receptive fields through
time. The second hypothesis states that even if tremors would have
a role in the maintenance of action potentials (as is the case with
microsaccades), their functional role extends to much more from an
information processing point of view.



Through test results, the sensitivity of obtained results in terms of
the model’s variable parameters was treated. The obtained results
compete with the best filtering techniques used today. Because of
its robustness, low memory exigence and its time-wise optimized
implementations mentioned earlier, the model could be efficiently
used in distributed systems with cost-efficient computational units.
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