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Abstract. This article deals with the identification of the so called hinging hyperplane mod-
els. This type of non-linear black-box models is relatively new, and its identification is not
thoroughly examined and discussed so far. They can be an alternative to artificial neural nets
but there is a clear need for an effective identification method. This paper presents a new
identification technique for that purpose that is based on a fuzzy clustering technique called
Fuzzy c-Regression Clustering. This clustering technique applies linear models as prototypes
and the model parameters and fuzzy membership degrees are identified simultaneously. To
use this clustering procedure for the identification of hinging hyperplanes, there is a need to
handle restrictions about the relative location of the hyperplanes: they should intersect each
other in the operating regime covered by the data points. The proposed method identifies a
hinging hyperplane model first that contains two linear submodels, and after that the two
halves of the model (the two linear hyperplanes) are treated separately: two other hinging
hyperplane models are identified on the basis of the operating regions of the first two lin-
ear submodels. Following these steps, a tree structured piecewise linear model is identified,
where the branches correspond to linear division of the operating regime, and the leaves
correspond to linear models. In this way a piecewise linear model is constructed.

1 Introduction

The problem of nonlinear function approximation has attracted much attention dur-
ing the past years [1], because in real life data sets the relationship between the
input and output variables is often nonlinear, which can be obtained via nonlinear
regression.

A lot of nonlinear regression techniques have been worked out so far (splines,
artificial neural networks etc). This article proposes a method for piecewise lin-
ear model identification. A piecewise linear model [2,3] contains many linear sub-
models, each of them operates a specific range of the whole operating region. The
proposed approach applies hinging hyperplanes as linear submodels. Hinging hy-
perplane model is proposed by Breiman [4], and several application examples have
been published in the literature, e.g. it can be used in model predictive control [5],
or identification of piecewise affine systems via mixed-integer programming [6].

Identification of this type of non-linear models is several times reported in the
literature, because the original algorithm developed by Bremain suffers from con-
vergency and range problems [5,7]. Methods like the penalty of hinging angle were
proposed to improve Breiman’s algorithm [1], or Gauss-Newton algorithm can be



used to obtain the final non-linear model [8]. Clustering technique has been applied
for identification purposes as well in [9] and [3].

The main goal of this paper is to present a new method for hinging hyperplane
model identification. The proposed technique uses the Fuzzy c-Regression Cluster-
ing. The Fuzzy c-Regression Model (FCRM) approach yields simultaneous estima-
tion of the parameters of ¢ regression models, together with fuzzy partitioning the
data. In this clustering, the cluster prototypes are functions instead of geometrical
objects (like points as in Fuzzy c-Means clustering, or ellipsoids as in Gath-Geva
clustering). Therefore, if the number of prototypes c is equal to two, FCRM can
be used to identify hinging hyperplanes, if the relative location of the two linear
regression models correspond to a hinge function, in other words: they should in-
tersect each other in the current operating region filled by the data point available.
For that purpose, constraints must be taken into account within the clustering pro-
cedure. Taking constrains into account is important because in this way even prior
knowledge can be incorporated and several problems can be effectively solved in
the clustering procedure (e.g. good initialization, avoiding local minima and deter-
mining the number of clusters). In this paper a method is proposed with which the
constrains can be incorporated in the clustering procedure, and this is used within the
hinge function identification approach. The proposed clustering based hinge func-
tion identification approach uses the alternating optimization technique to determine
the parameters of the model because this is used by the applied fuzzy clustering
technique like several other partitioning clustering methods [10]. It is a heuristic
optimization technique and has been applied for several decades for many purposes,
therefore it is an exhaustively tested method in non-linear parameter and structure
identification as well.

This paper is organized as follows. Section 2 discusses hinge function approx-
imation, the applied Fuzzy c-Regression Clustering technique, and how the con-
strains can be incorporated into the identification approach. After that the resulted
tree structured piecewise linear model is described. In Section 3 some application
examples are presented, and Section 4 concludes the paper.

2 Non-Linear Regression with Hinge Functions and Fuzzy
c-Regression Clustering

This section gives a brief description about what the hinging hyperplane approach
means on the basis of [1], followed by the Fuzzy c-Regression Model (FCRM)
clustering definitions.



2.1 Function Approximation with Hinge Functions

Suppose two hyperplanes are given by:
V=% 0", yk = x(6” o

where X = [X¢ 0, Xk 1,X2, - - - Xkn)» Xk,0 = 1 is the kth regressor vector and yy is the
kth output variable (k = 1,...,N). These two hyperplanes are continuously joined
together at {x : x’ (¥ —07) = 0} as can be seen in Figure 1. As a result they are
called hinging hyperplanes. The joint /A = 6 — 0~, multiples of /A are defined
hinge for the two hyperplanes, y;, = XZGJr and y, = xze’. The solid/shaded part of
the two hyperplanes explicitly given by

ye = max(x} 07,x707) or y, = min(x} 6" ,x/ 07) (2)
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Fig. 1. Basic hinge definitions

For a sufficiently smooth function f(x;), which can be linear or non-linear, as-
suming that the regression data {x,y;} are available for k = 1,...,N and assuming
that f(w) is the Fourier transform of f(x), then the function f(x;) can be repre-
sented as the sum of a series of hinge functions A;(x),i = 1,2,...,K are defined as
the hinge function. The approximation with hinge functions can get arbitrarily close
if sufficiently large number of hinge functions are used. The sum of the hinge func-
tions X | 1;(x;) constitutes a continuous piecewise linear function. The number of
input variables n in each hinge function and the number in hinge functions K are
two variables to be determined. The explicit form for representing a function f(x)
with hinge functions becomes

(max | min) (X,{ 0;", x,{Gf) 3)

-
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where (max | min) means max or min.



2.2 Hinge Search as an Optimization Problem

The essential hinge search problem can be viewed as an extension of the linear least-
squares regression problem. Given N data pairs as {x;,y1},{x2,y2},..-, {Xn, ¥}
from a function (linear or non-linear)

vk = f(xx) 4)

the linear least-squares regression aims to find the best parameter vector 0, by
minimizing a quadratic cost function

R N
0 = arg min Z (yk — X,{G)z )
0 k=1

with which, the regression model gives the best linear approximation to y. For
nonsingular data matrix

x|
T
X
X=|~ ©6)
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Xy

the linear least squares estimate y = x @ is always uniquely available.
The hinge search problem, on the other hand, aims to find the two parameter
vectors 07 and 0, defined by

N
(6%, 67] =argmin ) [y — (max|min) (XZ9+,X]€97)}2 (7
0+, 07 k=1
or in an equivalent form
Al 2
[GJF, 97] = arg+> min Z [(max | min) (yk — X,{6+,yk - X,{Gf)] 8)
0, 0~ k=1

A brute force application of Gauss-Newton method can solve the above opti-
mization problem. However, two problems exist [1]:

1. High computational requirement. The Gauss-Newton method is computation-
ally intensive. In addition, since the cost function is not continuously differen-
tiable, the gradients required by Gauss-Newton method can not be given an-
alytically. Numerical evaluation is thus needed which has high computational
demand.

2. Local minima. There is no guarantee that the global minimum can be obtained.
Therefore appropriate initial condition is crucial.



The proposed identification algorithm applies a much simpler optimization method,

the so called alternating optimization which is is a heuristic optimization technique
and has been applied for several decades for many purposes, therefore it is an ex-
haustively tested method in non-linear parameter and structure identification as well.
Within the hinge function approximation approach, the two linear submodels can be
identified by the weighted linear least-squares approach, but their operating regimes
(where they are valid) are still an open question. For that purpose the FCRM method
was used which is able to partition the data and determine the parameters of the
linear submodels simultaneously. In this way, with the application of the alternat-
ing optimization technique and taking advantage of the linearity in (y; — X,{B*)
and (yx — x,{@’), an effective approach is given for hinge function identification
(Problem 1). The proposed procedure is attractive in the local minima point of view
(Problem 2) as well, because in this way although the problem is not avoided but
transformed into a deeply discussed problem, namely the cluster validity problem.
In the following two sections this method is discussed briefly in general, and in
Section 2.5 the hinge function identification and FCRM method are joined together.

2.3 Fuzzy c-Regression Models

Fuzzy c-regression models yield simultaneous estimates of parameters of ¢ regres-
sion models together with a fuzzy c-partitioning of the data. The regression models
take the following general form

Yk = fi(%,0:) &)

where the local functions f; are parameterized by 8;. The membership degree y; x €
U is interpreted as a weight representing the extent to which the value predicted by
the model f;(xy,0;) matches yj. This prediction error is defined by:

Eix= ()’k_ﬁ(xk;ei))2> (10)

but other measures can be applied as well, provided they fulfill the minimizer prop-
erty stated by Hathaway and Bezdek [11]. The family of objective functions for
fuzzy c-regression models is defined by

M(\
M=

E,(U,{6;}) = ' (i )" Ei 2 (0;) (11)
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where m € (1,0) denotes a weighting exponent which determines the fuzziness of
the resulting clusters. One possible approach to the minimization of the objective
function (11) is the group coordinate minimization method that results in the fol-
lowing algorithm:

e Initialization Given a set of data Z = {(x1,y1),...,(Xn,yn)} specify c, the
structure of the regression models (10) and the error measure (11). Choose a
weighting exponent m > 1 and a termination tolerance € > 0. Initialize the par-
tition matrix randomly.



e Repeatfor/=1,2,...

Step 1 Calculate values for the model parameters 6; that minimize the cost
function E,, (U, {6;}).
Step 2 Update the partition matrix
U !

Hip = ’
ik ;zl(Ei,k/Ej,k)z/(m_l)

1<i<c¢,1<k<N. (12)

until [|UY —UD|| <&

A specific situation arises when the regression functions f; are linear in the param-
eters 0;, fi(x4;0;) = x{kei, where x;; is a known arbitrary function of x. In this
case, the parameters can be obtained as a solution of a set of weighted least-squares
problem where the membership degrees of the fuzzy partition matrix U serve as the
weights.

The N data pairs and the membership degrees are arranged in the following
matrices.

Xi; 1 J| gip 0 -+ 0
Xio y2 0 pip--- 0
Xi=| Cly=|L W= LT (13)
XZN YN 0 0 ---uin
The optimal parameters 0; are then computed by:
0,=X"WX] 'X"Wyy. (14)

The next section gives solutions how to incorporate constrains into the clustering
procedure presented in this section. These constrains can contain prior knowledge,
or like in the hinge function identification approach, restrictions about the structure
of the model (the relative location of the linear submodels).

2.4 Constrained Prototype based FCRM

This section deals with prototypes linear in the parameters. Therefore, as it was
shown, the parameters can be estimated by linear least-squares techniques. When
linear equality and inequality constraints are defined on these prototypes, quadratic
programming (QP) has to be used instead of the least-squares method. This op-
timization problem still can be solved effectively compared to other constrained
nonlinear optimization algorithms.

The parameter constraints can be grouped into three categories:

e Local constrains are valid only for the parameters of a regression model, A;0; <
;.

¢ Global constrains are related to all of the regression models, Ag0; < g, 1=
1,...,c.
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Fig. 2. Example for local, global and relative constraints.

o Relative constrains define the relative magnitude of the parameters of two or

more regression models,

6.
Avel i [9’} < Ol i,
J

15)

An example for these types of constrains are illustrated in Figure 2.

In order to handle relative constraints, the set of weighted optimization problems
has to be solved simultaneously. Hence, the constrained optimization problem is

formulated as follows:

1
min{GTHG+cT6}
0 (2

with H = 2X" WX, ¢ = —2X"Wy’, where

y 0
, y 0,
y = ,0=1 .
y 6,

and the constraints on 0:

A< m

(16)
0 Wy 0 0
0 0 Wp--- 0
, W= . (7)
X, 0 0 W,

(18)



with

A 0 - 0 (O]
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0 0 --- A ()8
A=| Ay 0 -0 |, 0= og |. (19)
0 Ag-- 0 gl
0 o --- Agl Mgy
L {Arel} ] L {O)rel} |

2.5 Improvements of Hinge Identification

For hinge function identification purposes, two prototypes have to be used by FCRM
(c = 2), and these prototypes must be linear regression models. However, these lin-
ear submodels have to intersect each other within the operating regime covered by
the known data points (within the hypercube expanded by the data). This is a crucial
problem in the hinge identification area [1]. To take into account this point of view
as well, constrains have to be taken into consideration as follows. Cluster centers
v; can also be computed from the result of FCRM as the weighted average of the
known input data points

o Zivzl Xr Ui k

~—yN .
Y Mik

These cluster centers are located in the 'middle’ of the operating regime of the

two linear submodels. Because the two hyperplanes must cross each other (see also
Figure 3), the following criteria can be specified:

Vi (20)

A4l (91 792) < 0and Vz(el 762) >0 21D
or
Vi (91 —92) > 0 and Vz(@] —92) <0 22)

These relative constrains (15) can be used to take into account the constrains
above:

0 v —V
Avet,12 { ej < 0 where A1z = [_iz vﬂ (23)

according to (21).
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Fig. 3. Hinge identification restrictions.

2.6 Tree Structured Piecewise Linear Models

So far, the hinge function identification method is presented. The proposed tech-
nique can be used to determine the parameters of one hinge function. In general,
there are two method to construct a piecewise linear model: additive and tree struc-
tured models [1]. In this paper the later will be used since the resulting binary tree
structured hinge functions can have a simpler form to interpret and more convenient
structure to implement.

The basic idea of the binary tree structure is as follows. Divide the data set into
an estimation set and validation set. With the estimation data set, based on certain
splitting rules, grow and sufficiently large binary tree. Then use the validation data
set to prune the tree into a right size. The estimation data is recursively partitioned
into subsets, while each subset leads to a model. As a result, this type of model is
also called the recursive partitioning model. For example given a simple symmetri-
cal binary tree structure model, the first level contains one hinge function, the second
level contains 2 hinge functions, the third level contains 4 hinges, and in general the
kth level contains 2*~1) hinge functions. Any of the following criteria can be used
to determine whether the tree growing process:

1. The loss function becomes zero. This corresponds to the situation where the
size of the data set is less or equal to the dimension of the hinge. Since the hing-
ing hyperplanes are located by linear least—squares. From least—squares theory,
when the number of data is equal to the number of parameters to be determined,
the result would be exact, given the matrix is not singular.

2. J =J" +J~ During the growth of the binary tree, the loss function is always
non-increasing, i.e. J > J1 +J~. When there is no decrease in loss function is
observed, when the tree growing should be stopped.



3 Application Examples

In this example, the proposed method is used to approximate two simple univariate
nonlinear functions, y = sin(3x) and y = x°.

The proposed method identifies a hinging hyperplane model first that contains
two linear submodels and after that for each operating regions of these submodels
two other hinging hyperplane models are identified. Following these steps, a tree
structured piecewise linear model is identified, where the branches correspond to
linear division of the operating regime, x’ (8" —67) <0, and the leaves correspond
to linear models. In this way a piecewise linear model is constructed (see Figure 4
and Figure 5).
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Fig. 4. Approximation of the y = x> function by a binary tree of hinging hyperplane models.

As can be seen in these figures, the proposed clustering algorithm is able to
effectively partition of the operating region of the local models and the resulted
partitioning is easily interpretable thanks to the tree-like structure of the model.

For comparison the nonlinear identification toolbox of Jonas Sjoberg [12] has
been used and global hinging hyperplane models with eight hinges have been iden-
tified based on the same training data. Surprisingly, the resulted classical models
gave extremely bad modeling performance (see Figure 6 and Table 3). This con-
firms that both the proposed clustering based constrained optimization strategy and
the hierarchial model structure has advantages over the classical gradient-based op-
timization of global hinging hyperplane models.
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Fig. 5. Approximation of the y = sin(3x) function by a binary tree of hinging hyperplane
models.
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Fig. 6. Approximation of the y = x> function by a classical global hinging hyperplane model.

sin(3x) x
Sjoberg 0.1052 1.1198

This paper|7.4771 10-%[1.7032 10~%
Table 1. Mean square errors of the hinging hyperplane models

4 Conclusion

Hinging hyperplane models can be an alternative to artificial neural nets. This paper
presents a new identification technique for hierarchial hinging hyperplane models
based Fuzzy c-Regression Clustering. This clustering technique applies linear mod-
els as prototypes and the model parameters and fuzzy membership degrees are iden-
tified simultaneously. Since hyperplanes should intersect each other in the operating
regime covered by the data points a constrained version of the fuzzy c-regression



clustering has been developed. The proposed method identifies a hinging hyper-
plane model first that contains two linear submodels, and after that the two halves
of the model (the two linear hyperplanes) are treated separately: two other hinging
hyperplane models are identified on the basis of the operating regions of the first two
linear submodels. Following these steps, a tree structured piecewise linear model is
identified, where the branches correspond to linear division of the operating regime,
and the leaves correspond to linear models. In this way a piecewise linear model is
constructed.
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