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Abstract — an efficient approach recently was
invented for the adaptive control of approximately
and partially known mechanical systems. Like
traditional soft computing it is based on "uniform
structures” for modeling, but these structures are
obtained from certain Lie groups as the Symplectic
Group characteristic to inner symmetries of the
mechanical systems. This approach considerably
reduced the number of free parameters in the model
in comparison e.g. with neural networks or fuzzy
systems. It also replaces the process of parameter
tuning with simple, lucid, and explicit algebraic
operations of limited steps. Till now its efficiency
was investigated for mechanical uncertainties and
external dynamic interactions. The present paper
concentrates on its application for controlling
electric DC motors driving mechanical components:
the inductance of the motor armature sets limit to
the speed of the change in the motor torque in the
case of a voltage generator-controlled motor. The
complex non-linear interaction of the mechanical,
the electrical and the software components
prescribing the control rule for the mechanical parts
are considered. To achieve adaptive control the
Generalized Lorentz Group is applied as an
especially convenient algebraic representation for
both the mechanical and the current control even
for SISO sub-systems. Simulation results are
presented for the contirol of a CTC controlled
pendulum.

1, INTRODUCTION

Insufficient and inaccurate knowledge regarding the
dynamic properties of the robot arm, the dynamic
interaction between the arm and its environment as well
as the behavior of the electric drives makes the adaptive
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control of electromechanical systems an interesting
task. The need for developing a universally useful
controller makes it undesirable to include some
particular model of the robot-work-piece interaction in
the control software. Instead of this a more intelligent
control being able to "learn” the main features specific
to the technological operation under consideration
would be much more expedient. This indefinite nature
of the task makes it unlikely to find a closed form
analytical problem-formulation for which an elegant
proof of convergence or bounded error etc. could be
found. It is more likely to achieve results via applying
simple modeling and learning technique as in the case
of the traditional Soft Computing (SC) approaches.

The present state of this approach corresponds to the
creation of a new branch of Soft Computing (SC) for
particular problem classes possibly wider than that of
the control of mechanical systems [1]. Like
“traditional” SC it evades the development of analytical
system models and tries using simple uniform
structures, but in contrast to the traditions, these
structures are obtained from various Lie groups used in
different fields of Physics as the Symplectic Group [2]
or the Generalized Lorentz Group [1]. The main
advantages are drastic reduction in size and increase in
lucidity in comparison with the "conventional”
architectures being the subject of ample investigations
[e.g. 3-4]. Further advantage is that the generally
"obscure" --gither strictly causal, semi-stochastic or
fully stochastic—- "learning” or parameter tuning seems
to be replaceable by simple explicit algebraic
procedures of limited steps in the case of the new
structures. The basic idea originated from the field of
mechanical systems' control, and later it was further
developed via considering certain general features of
this internal symmetry group in a much wider scale.
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To follow this program in the present paper a [ DOF
mechanical systems driven by non-ideal electric DC
motors are considered as possible extension of the
investigations. First typical convergence possibilities
are considered for SISO systemns in the case of the
adaptive law suggested. Following this the model of a
CTC controlled pendulum driven by a DC motor is
developed. Finally simulation investigations are
presented for the case of the proposed adaptive control
and conclusions are drawn.

II. THE IDEA OF THE ADAPTIVE CONTROL
BASED ON ABSTRACT LIE GROUPS

From purely mathematical point of view the conirol
problem can be formulated as follows: there is given
some imperfect model of the system on the basis of
which some excitation is calculated for a desired input
il as e=g@(i9). The system has its inverse dynamics
described by the unknown function I =p(@(i¥)= f(i9)
and resulting in a realized if instead of the desired one
id. (In Classical Mechanics these values are the desired
and the realized joint accelerations, while the external
free forces and the joint velocities serve as the
parameters of this temporarily valid and changing
function.) It is evident, that normally one can obtain
information via observation only on the “net" function
S0, and that this function considerably varies in time.
Furthermore, we do not have practical tools to
"manipulate” the nature of this function directly: we can
manipulate or deform its actual input i4* in comparison
with the desired one in general. The aim is to achieve
and maintain the i9=f(id*):=g(i?) state, that is when the
original function altered by the deformation possesses
the prescribed fixed point. [We can directly manipulate
only the nature of the model function @().]

On the basis of the idea of the renormalization
transformation applied in Chaos Theory as e.g. in [5-8]
a "scaling iteration” as its modification was suggested
for finding the proper deformation factor for a SISO
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Fig. 1: Example A/1: {:, = 1},;' -1,
monotone, properly convergent case
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Fig. 2. "Example A/2": {s, |<1},s, 1,
monotone, properly convergent case

system in [1]. The original problem for which
renormalization can be applied is given as follows: on
the basis of some physical considerations there is given
a function g(x) with which a series x,,;=g(x,) Is
generated. Other considerations indicate that the fixed
point of this series x=g(x) should be a given value. It
may happen that the above series is divergent or
converges to a different fixed-point. For "amending" or
manipulating g(x) a renormalization parameter s is so
introduced that the modification is %(x):=s"g(sx). It can
be shown that if g(x) is contractive for a given region
around x the series defined by the equation x=s,.;
!o(s,x) converges to a proper renormalization value.
This problem is quite analogous with our control task
with the exception that the answer of the composite
system cannot be manipulated by s”’. Therefore in [1]
the following modification of the original algorithm
was suggested:

snﬂf(sﬂs,,,l...slx"): 3 (D

If the situation of 5, —»1...s,s,,..5, — soccurs sx’

=1

just corresponds to the desired deformation of the input
according to the above program. This series has a lucid
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Fig.3. "Example B/1" {5, |<1},s, =1,
convergence to a false solution 0 instead of a
negative value with a positive initial (that is
desired) value
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Fig. 4. Example B/2 {s |<1}s, =1,

convergence to a false solution 0 instead of a
negative value with a negative initial (that is
desired) value

geometric interpretation shown Fig.1 for a typical case
"Example A/1": Convergent series that converges to the
desired solution. For this f{x) must be strictly monotone
increasing, flat, and the solution must be in the positive
quarter of the plain. The monotone and proper
convergence of the scaling factors can be either
increasing as in Fig. 1 or decreasing as in Fig. 2. of
"Example A/2". In the next example the function is not
"flat enough”, so the "s"-factors can be greater and
smaller than one. (However, though their series is not
monotone, convergence to the proper value occurs).
The above series can work for positive x? till the
solution of the equation x = f(x)> 0. If this solution is
5% }—50, which
is convergent but doesn't converge to the solution of the
problem. This corresponds to Fig. 3 ("Example B/1"),
that is to convergence to a false value, to zero. Another
example of false "convergence to zero" can be
considered when the solution is not located in the
"proper quarter” though the initial (desired value) is
negative (a counterpart of "Example B/1" Fig. 3
"Example B/2"). (To take into account the effect of the
negative scaling numbers double mirroring for the
vertical axis and alteration of the sign of the function
were applied).

The above considerations are quite "illustrative" for
SISO systems in which a scalar value can be either
increased or decreased in order to approach a desired
solution. For MIMO systems the situation can be more
ambiguous due to the richer set of possibilities as a
consequence of the greater degree of freedom of the
system. For a continuous f:91" — R’ mapping the
above scalar factors can be replaced by certain specially
constructed linear transformations as
I'(snsn_!sn_z..slx"):x",{sm,s",s“_,,...,sl} in  which
appropriate convergence is required not only in the

negative, we obtain a series {s 5

PLSER

S

A+l

norm of the vectors but in their direction, too. Since in
this case the task is only ambiguously defined, it is
expedient to utilize the available freedom for
constructing convenient and useful solutions: a) let the
matrices be non-singular; b) let their inverses easily
computable; c) let their product be of the same nature
as the original matrices are; d) let they form a
continuous and a smooth set also containing the
identity operator, so they can be used as slowly and
continuously changing corrections to a given model.
For this purpose matrices belonging to any Lie group
defined by a basic quadratic expression as
A'GA=G,detG =0,det A =1 with a constant G is

appropriate since A7 =G'A'G. If for instance

-1

light) correspond to the Orthogonal Group, the
Generalized Lorentz Group, and the Symplectic Group
describing the inner symmetry of the Euclidean
Geometry, the Electrodynamics (when the size of G is
4x4), and that of the Classical Mechanics, respectively,
(Positive definite Riemannian metrics can be associated
only with the first case.) In the case of the Orthogonal
Group it is easy to create a rotation which rotates a
given vector to be parallel with an other one and leaves
their orthogonal sub-space unchanged. This means that
only the minimum of the necessary transformations is
executed, so in this sense the given transformation is as
close to the identity operator as possible. In similar way
the "Minimum Operation Symplectic Group” and the
"Generalized Lorentz Group" were invented and used
in [2] to obtain such "minimum transformations”.
Preliminary steps also were done for investigating the
convergence of the solution of this series in general and
in details in [1]. In the next part these ideas are applied
for a SISO control of both parts of a connected 1 DOF
mechanical and 1 DOF electrical system.

0 I ) )
G=1, (1,...,1,—0),3: 0 (c is the velocity of

III. SIMULATION INVESTIGATIONS FOR A
GIVEN ELECTROMECHANICAL SYSTEM

Actually this system consists of a pendulum of mass
"m", length "¢". From the Euler-Lagrange equations as
the equation of motion of the mechanical system is
described by

. 1
j=~2sin(g)+—0 @)
¢ ”

in which "g" corresponds to the pendulum's angular
position, "g" is the gravitational acceleration and "Q" is
the motor's torque exerted on the pendulum's shaft. As a
"rough model" of that

0=65"+p (3)
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with which the relation between the "desired" and the
"realized" accelerations (superscripts D and R,
respectively) --at least in the case of perfect or “ideal’
motor-- will be:

~

e @ .o B 2.
=——4" +—+——=gin 4
4 mﬁ"q mb= (Q) )

It is trivial that for &>0and 3/me* > g/¢ positive

desired acceleration will result in positive required
acceleration. However, a similar statement is not true
for arbitrary negative acceleration, It is easy to see that
if an "artificial mechanical model” is chosen as

B =12t sign(3° ), and & =%m€l (5)

the desired and the "realized" accelerations will have
the same sign. Via excluding near zero desired
acceleration (gDpp) within a thin interval around 0 as
if sign(qDpp)#0 qDpp=qDpp+sign(qDpp)*le-3;
else
qDpp=1e-3;

end;
as far as the mechanical part of the control is concerned
convergence can be expected according to the general
considerations made for SISO systems (via application
of (1) for the desired acceleration as input, and the
realized acceleration as the output of the function this
excludes zero scaling factor, too).

The motor's equation of motion expressed in the term
of the Q(¥) torque exerted on the pendulum’s shaft in the
case of a voltage-generator-based command signal is
given as

; R #:KK:. . /JK
Fl+— Ol )+ ——=glt)=—Uls
0+ 0le)+ 2K )=
Q)+ A0(e)+ Bils) = cU()
in which
« [J(») is the motor voltage (provided by a voltage
generator, used for control purposes);
= [ denotes the armature inductance (constant,
characteristic to the coil in the armature);
e R stands for resistance of the armature coil
{constant);

(6)

»  is the gear ratio (constant, exaggerates the torque
at the robot’s joint);

e Kp is the electromotive self-induction constant;

* K means the torque constant of the DC motor;

It also is supposed that the exact motor torque cannot

be directly measured: for instance it can be estimated

via measuring the motor current with a near unit factor

= fo™* If we distinguish between the
{AB,C} and their
~,§,5} in the case of
CTC control --that is when the "desired torque" is
prescribed as O™ =a(0™ - 0™*) and the model

parameters are used to calculate the U(r) control signal
from (6)-- this leads to the equation of motion as

i( Meas _Tm):_a%t{—m:ns _TDcs)+

B as QO

"exact” motor parameters

approximately known values

dr

E7-r=5lE-o)

If the model values well approximate the actual A, B,
and C values, and /=1, and « is great enough the
dominating term on the right hand side corresponds o
an exponential decay of the difference between the
torque "ordered from the motor" on the basis of the
mechanical model, while the terms in the [] brackets are
small errors or perturbations in this exponential
behavior.

For improving this control, exactly in the same way
as in the case of the mechanical system's control
generalized Lorentz matrices associated with the
vectors in the MIMO variant of (1) defined as (f is the
vector, e is the unit vector parallel with f, ¢=1, the
other elds are pairwisely orthogonal unit vectors, each
of them is orthogonal to €, too) can be used with a
diagonal matrix g=<l,...,1,-c%>. For a SISO system the
first component of f contains the physically interpreted
value, its second component is a "dummy factor” equal
to 1, and the appropriate scaling matrix can be obtained
as s=[D]g’![R]Tg from the "Desired" and the "Realized"
accelerations:

e‘“m l e ' | [ | f ®)
sl Lo || o [

equations (4,5,7) --and in the case of the application of
the adaptivity in (1)-- a closed system of equations is
obtained. It describes the complicated non-linear
interaction and coupling between the mechanical, the
electrical, and the control software components. As in
the case of the mechanical system, for more efficient
behavior for scaling the model of the electrical
components can be "completed” with a jumping term
yielding equation of motion for the torque as

(7
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Fig. 5. Ordered and exerted torques without adaptation,
with motor adaptation only, with mechanical adaptation
only, and with full adaptation
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Fig. 6. The speed of the change in the motor torque

(corresponds to Fig. 5)
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Fig. 7. The norm of the Lorentzian of the
mechanical identification without and with motor
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In the simulations A=1, B=1, and C=1 was used for
the "actual motor", and 1.3, 1.4, and 0.8 values for their
inaccurate approximation in the motor model, and
£=0.8, and 7=5000. It was required to have two times
bigger exponent for the motor torque tracking than for
the mechanical trajectory tracking to make the motor
fast enough for acting in a computed torque control.

Typical simulation results are given in Fig. 5
describing the ordered and exerted torques at different
levels of adaptation. As it was expected the essential
difference occurs when the identification of the
mechanical system is turned on or off. The motor
adaptation only slightly influences the exerted torques.

In Fig. 6 the speed of change in the motor torque is
described in the cases represented in Fig. 5. It is clear
that the essential difference happens when the
mechanical identification is switched on or off. The
interaction of the adaptation algorithms also is apparent
in that figure but it becomes more visible in Fig. 7
describing the norm of the Lorentzian of the mechanical
identification with and without the motor identification.

Norm of Motor Lorentzian
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Fig. 8. The norm of the motor's Lorentzian without
and with mechanical identification

It is clear that the motor identification can decrease the
"burden” of the mechanical identification to some
extent. In Fig. 8 the counterpart of these curves, the
norm of the Lorentzian of the motor-identification is
described without and with mechanical identification.
Switching on the identification loop for the mechanical
systemn imposes more burden on the motors adaptive
current control,

Regarding the trajectory reproduction essential
difference occurs only between switching on or off the
identification of the mechanical part only.

IvV. CONLUSIONS

In this paper a generalized Lorentz transformation
based adaptive control was investigated for controlling
an electromechanical device consisting of a DC motor
driving the mechanical shaft of a physical pendulum. It
was shown via simulation that the same adaptive
control philosophy can simultaneously be applied to the
mechanical and the electrical parts. For further
investigations it seems to be expedient to consider
similar MIMO electro-mechanical systems for further
proofing.
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