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Abstract— Unfolding is a semantics-preserving program trans-
formation technique that consists in the expansion of subexpres-
sions of a program using their own definitions. The unfolding
transformation is able to improve programs, generating more
efficient code. Unfolding is the basis for developing sophisticated
and powerful programming tools, such as fold/unfold transforma-
tion systems or partial evaluators. In this paper we address the
problem of extending the classical definition of the unfolding rule
(for pure logic programs) to a fuzzy logic setting. We use a fuzzy
variant of Prolog [1] where a fuzzy computed answer is a pair
(truth degree; substitution) computed by Fuzzy SLD-Resolution.
We adapt the concept of a computation rule, a mapping that
selects the subexpression of a goal involved in a computation
step, and we prove the independence of the computation rule,
Moreover, we define a fuzzy unfolding rule and we demonstrate
its strong correctness properties, that is, the original and the
unfolded program compute the same fuzzy computed answers.
Finally, we discuss how to improve the expressive power (of the
fuzzy component) of our language by introducing a more general
Iabeled mark language that the one described in [1].

I. INTRODUCTION

Logic Programming [2] has been widely used for problem
solving and knowledge representation in the past. Neverthe-
less, traditional logic programming languages do not incor-
porate techniques or constructs in order to treat explicitly
uncertainty and approximated reasoning.

Fuzzy Logic provides a mathematical background for mod-
eling uncertainty and/or vagueness. Fuzzy logic relays on
the concept of fuzzy set, the theory of fuzzy connectives
(t-norms, t-conorms, etc.) and the extension of two-values
classical predicate logic to a logic where formulas can be
evaluated in the range of the [0,1] real interval (see [3] or
[4] for a comprehensive introduction of this subject). Fuzzy
sets 5] are objects introduced to deal with the fuzziness or
vagueness we find in the real world when we try to describe
phenomena that have not sharply defined boundaries. Given a
set U, an ordinary subset A of U can be defined in terms of its
characteristic function x 4(x) which neatly specifies whether
or not an element x is in A, (i.e, retums 1 if z € A, or
0 otherwise). On the other hand, a fuzzy subset A of U is
a function A : U — [0,1]. The function A is called the
membership function, and the value A(xz) represents the degree
of membership' of = in the fuzzy set A. Different functions
A can be considered for a fuzzy concept and, in general, they

't is not meant to convey the likelihood that = has some particular attribute
such as “young” [4],
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will present a soft shape instead of the characteristic function’s
crisp slope of an ordinary set.

Fuzzy Logic Programming is an interesting and still growing
research area that agglutinates the efforts to introduce Fuzzy
Logic into Logic Programming. During the last decades, sev-
eral fuzzy logic programming systems have been developed,
where the classical inference mechanism of SLD-Resolution is
replaced with a fuzzy variant which is able to handle partial
truth and to reason with uncertainty. Most of these systems
implement the fuzzy resolution principle introduced by Lee in
(6], such as the Prolog-EIf system [7], Fril Prolog system [8]
and the F-Prolog language [9].

On the other hand, there is also no agreement about which
fuzzy logic must be used when fuzzifying Prolog. Most
systems use min-max logic (for modeling the conjunction and
disjunction operations) but other systems just use Lukasiewicz
logic [10]. Other approaches are parametric with respect the
interpretation of the fuzzy connectives, letting them unspeci-
fied to obtain a more general framework [1]. Recently, it has
been appeared in [11] a theoretical model for fuzzy logic
programming which deals with many values implications.
Finally, in [12] we find an extremely flexible scheme where,
apart from introducing negation and dealing with interval-
valued fuzzy sets [13], each clause on a given program may
be interpreted with a different logic. At the end of this paper,
we show that this last extension can be partially simulated in
our setting in a very natural way.

Program transformation is an optimization technique for
computer programs that starting with an initial program P
derives a sequence Py, .. -+ P of transformed programs by
applying elementary transformation rules. The aim is that the
final program P, have the same meaning as Py, but with a
more efficient behaviour with regard some criterion. Program
transformation can be seen as a methodology for software
development, hence its importance.

Among the elementary transformation rules the so called
unfolding rule has been widely studied. In essence, an un-
folding rule is a program transformation operation which
replaces a program rule by the set of rules obtained after
applying a symbolic computation step (in all its possible
forms) on the body of the selected rule [14]. Depending on
the concrete paradigm taken into account (functional [15],
logic [16] or integrated functional-logic [17]) the considered
computation step will be performed using —some variant of—
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its associated operational mechanism (rewriting, resolution or
narrowing, respectively). The unfolding rule is able to produce,
by itself (i.e., without being combined with any other kind
of transformation), important optimizations on the original
program code. Beyond this initial benefit, different unfolding
formulations have shown their usefulness in the construction of
advanced techniques for program synthesis, program analysis,
debugging, compiling, learning, and so on. But, perhaps, the
fields where unfolding has exhibited its best properties and
powerful capabilities were partial evaluation and fold/unfold-
based program transformation [18].

Although one of the main goals of a transformation tech-
nique is to obtain a better behaviour of the transformed
program with respect to some efficiency criterion (for in-
stance, exccution time), from the theoretical point of view,
the main goal is to achieve the semantics correctness of
the transformation. A proper formulation of the unfolding
rule must guarantee that it is semantics preserving (i.e.,
the unfolded program must reproduce as closely as possible
the “observable™ effects of the original program). For this
purpose, several “applicability” conditions must be identified
without drastically reducing the class of programs where the
transformation could be performed in a safe way. Language
syntax and operational semantics play an important role in
the identification of such requirements, as we will see in
the extension of the unfolding transformation (for pure logic
programs) to a fuzzy context that we develop in this paper.

We have considered different fuzzy Prolog dialects and,
finally, we have selected the one described in [1], that we
call f-Prolog, since we find that its sintax and operational se-
mantics are appropriated for the formalization of the unfolding
transformation. In this langnage a fuzzy computed answer is
a pair {truth degree; substitution) computed by Fuzzy SLD-
Resolution. We adapt the concept of a computation rule, a
mapping that selects the subexpression of a goal involved
in a computation step, and we prove a result which is the
fuzzy countepart of the independence of the computation rule
theorem demonstrated in [2].

We have defined a fuzzy unfolding rule for a labeled
mark variant of f-Prolog and, we have studied its correctness
properties. The major technical result consists of proving the
strong soundness and completeness for the new unfolding
rule, namely that the fuzzy answers computed by Fuzzy SLD-
Resolution in the initial and the final program coincide. Also,
we discuss how to improve the expressive power (of the fuzzy
component) of our language by introducing a more general
labeled mark language that the one described in [1].

The outline of this paper is as follows. In the next section,
we recall the most important features of f-Prolog. In Sec-
tion Il we present the operational semantics of our language.
We also introduce an extension of the computation rule an state
its independence property. In Section IV we define the fuzzy
unfolding rule and we present its strong correctness. Finally,
before concluding in Section VI, we discuss in Section V how
to extend our fuzzy language while preserving the properties
of our transformation. Missing proofs can be found in [19].

II. Fuzzy PROLOG PROGRAMS

There is no common method for introducing fuzzy concepts
into logic programming. We have found two major, and rather
different, approaches:

- The first approach, represented by languages us
LIKELOG [20], replaces the syntactic unification mech-
anism of classical SLD-resolution by a fuzzy unification
algorithm, based on similarity relations (over constants
and predicates). The fuzzy unification algorithm provides
an extended most general unifier as well as a numerical
value, called unification degree, Intuitively, the unification
degree represents the truth degree associated with the
{query) computed instance. Programs written in this kind
of languages consist, in essence, in a set of ordinary (Pro-
log) clauses jointly with a set of “similarity equations”
which plays an important role during the unification
process.

« For the second approach programs are fuzzy subsets
of clausal formulas, where the #uth degree of each
clause is explicitly annotated. The work of computing and
propagating truth degrees relies on an extension of the
resolution principle, whereas the (syntactic) unification
mechanism remains untouched. Examples of this kind of
languages are the one described in [11], [1] or the one
presented in [12] (although it uses interval fuzzy logic
instead of truth degrees).

We are mainly interested in the second class of fuzzy logic
languages. Among the variety of fuzzy logic programming
languages in the literature, the one described in [1] is specially
appropriated to define the concept of unfolding of fuzzy logic
programs. In this section we present this language, that we
call f-Prolog (fuzzy Prolog).

Let L be a first order language containing variables, function
symbols, predicate symbols, constants, quantifiers, ¥ and 3,
and connectives —, seq, ety, and ety (the intended meaning is
that seq is an implication —the left-arrow version is written
as qes—, ety 1S a conjunction evaluating modus ponens with
seq, and ets is a conjunction typically occurring in the body
of clauses). Although et; and ety are binary connectives, we
usually generalize them as functions with an arbitrary number

of arguments. That is we write, for instance, eta(zy,...,T,)
instead of ety(x1, eta(xa, ... eta(Tn_1,2x) ...)).

A (definite) clause is a formula V(A qes eta(B), ..., B,)).
and a (definite) goal is a formula V(qes eta(By,...,Bn)),

where A and each B; are atomic formulas. In general, we
call them (seq, ety )-formulas or simply formulas if the kind
of connectives used in their writing is not important or can
be inferred by the context. Also, we write A«—B1,..., B, as
syntactic sugar of V(A qes et2(B1,..., By)), etc. As usually,
A is said to be the head of the clause and (By,..., B,)
the body. Clauses with an empty body are called facts,
whereas clauses with a head and a body are called rules. A
sort of degenerate clause is the empty clause, denoted ‘00,
representing a contradictory formula.

Definition 2.1: [1] A fuzzy theory is a partial mapping 7'
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applying formulas into real numbers in the interval (0, 1].
A definite f-Prolog program, P, is a fuzzy theory such that:

1) dom(P) is a set of (seq, ety)-definite program clauses

or facts,

2) dom(P)/~ is finite,

3) for Cy = Cy and C; € dom(P) we have Cy € dom(P)

and P(C,) = P(Ca).

where, given two formulas 4 and B, A4 = B if and only if A
1s a variant of B.

Informally, a (definite) f-Prolog program can be seen as a set
of pairs (C; @), where C is a (definite) clause and o« = P(C)
1s a truth degree expressing the confidence which the user
of the system has in the truth of the clause C. Often, we’ll
write ‘C with o« = P(C)” instead of (C; P(C)). A truth degree
& = 1 means that the user believes the clause C is true; on
the other hand, a truth degree less than 1 represents the degree
of uncertainty or lost of confidence on the truth of a belief;
a truth degree near () expresses the lack of confidence on the
truth of a belief.

In [11], [1], the declarative semantics of a f-Prolog program
is given in terms of a least fuzzy Herbrand model. Also, its
characterization by a fix point semantics is presented.

Sometimes, the meaning functions for connectives et; and
ety are defined as follows: [et;](ry,...,7) = [[/_, i and
leta](ri,-..,7n) = min(ry,...,r,), but we prefer let them
unspecified as arbitrary t-norms [et,] : [0,1] — [0,1] —
L.e. they are commutative, associative, and monotone in both
arguments and [et;](z, 1) = z (hence, they subsume classical
conjunction {0,1}* — {0, 1})— properly extended as many
valued functions. Note that, in general, meaning functions for
et; connectives are not distributive.

III. OPERATIONAL SEMANTICS AND
LABELED Fuzzy PROLOG

Given a goal G its truth degree, c, is obtained by evaluating
a sequence of Fuzzy SLD-Resolution steps leading to an empty
clause. In the sequel we formalize the concepts of Fuzzy
SLD-Resolution, Fuzzy SLD-Derivation and Fuzzy computer
answer, with slight variations with regard to the definitions
that appear in [1].

Let P be a program and G a goal. Since dom(P)/~ is a
classical definite program, the classical SLD-resolution should
still work. Therefore, the main operational problem is to definc
the machinery for evaluating truth degrees. The truth degree
of an expression is a semantic notion that must be evaluated
using meaning functions. Considering a program rule ¢ =
AwBy, ..., By, witha = ¢, and a goal G = «—A’, where A’
unifies with the head A of C, it is possible a SLD-resolution
step leading to the resolvent G’ —(B1,..., Bp). If we
want to evaluate the truth degree of G, we have to compute
the truth degrees 1, ..., 7, of all subgoals By, ..., B,, before
the truth degree g of the rule can be applied to obtain
let1](q, [eta](r1, ..., 7)), the truth degree of the goal G. We
need a mechanism in order to remenber that a program rule
was applied in former steps, since it is necessary to distinguish
when to apply [et;] or [ets]. In [1] a context grammar was

[¥%)

introcluced to solve this problem. This grammar contains left
and right marks ( and ) labeled by a real value,
to remember the exact point where a rule with & = g was
applied. Hence the previous resolution step can be annotated
ds:\ﬂ By,....Bm |Rg|

Ve call If-Prolog the extended language obtained by adding
labeled marks and real numbers to the f-Prolog alphabet. An
If-expression is an atom, a sequence of real numbers, or a
real number enclosed between labeled marks. The following
definition makes use of If-Prolog in the formalization of Fuzzy
SLD-Resolution (we write G for the -possibly empty- sequence
of syntactic objects 0y, ...,0,).

Definition 3.1: Let G = «Q be a If-Prolog goa!l and let
¥ be a substitution, a If-Prolog state is a pair {(Q; ). Let £
be the set of If-Prolog states. Given a f-Prolog program P,
we define Fuzzy SLD-Resolution as a state transition system,
whose transition relation —pr C (€ x £) is the smallest
relation satisfying the following rules:

Rule 1. (Clause Resolution Rule)

(X, A, V)i 9) = pa((X,[Lq [B[R, |  7)0; 96) it
1) A, is the selected atom,
2) ¢ is an mgu of A,, and A,
3) P(A—B) =g and B is not empty.
Rule 2. (Fact Resolution Rule)
((Y, Am:?)§ t())_’FR((Y" T ?)9\ ve) if
1) A,, is the selected atom,
2) 8 is an mgu of A,, and A, and
3) P(A=)=r.
Rule 3. (Jet;] Resolution Rule)?

(X[La | RV 0) = pa(X, [eta (g, ), ¥ 9) if

1) r is a real number.
Rule 4. ([et;] Resolution Rule)

(X: LTI Y;'l?)_’P‘R(X: let2](ry, - - Fals Yad) if
1) r1,...,r, are real numbers.

All familiar logic programming concepts (SLD-resolution
step, SLD-derivation, etc.) can be extended for the fuzzy
case, assuming also that clauses involved in fuzzy SLD-
computation steps are renamed before being used. In the
fUllOWil’lg, symbols —FR1, *FR2, 7 FR3 and — R4 May be
used for explicitly referring to the application of each one of
the four fuzzy resolution rules. When needed, the exact If-
expression and/or clause used in the corresponding step, will
be also annotated as a super-index of the — g symbol. In
order to extend the notion of computer answer in our fuzzy
setting, in the following definition we use id to refer to the
empty substitution, Var(s) denotes the set of distinct variables
occurring in the syntactic object s, and #[Var(s)] corresponds
to the substitution obtained from & by restricting its domain,

Dom(8), to Var(s).
Definition 3.2: Let P be a f-Prolog program and G = —Q
be a Ii-Prolog goal. A pair (r;#) consisting of a real number

2In [1], the [et1] resolution rule is expressed as a combination of our third
and fourth rules but our definition is fully equivalent Lo the original one.
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r and a substitution 0 is a fuzzy computed answer (fc.a.) if
there is a sequence &y, ..., &, (called f-derivation) such that:
1) & = (Qid);
2) foreach 0 < i < mn, G, —pgr Giy1 15 a fuzzy SLD-
resolution step;
3) Eno= Un®’) and O =0'[Var( Q)]
We 1llustrate the last definition by means of an example.
Example 3.3: Let P be a f-Prolog program,

Cr:  p(X)—q(X,Y),r(Y)  with =038

Co: gla,Y)—s(Y) with a = 0.7

Cs: q(Y,a)—r(Y) with o = 0.8

Cy: (¥ ) with o = 0.7

Cs: s{b)— with o = 0.9
For the sake of simplycity, assume [et1](z,y) = = -y
and [ety](z,y) = min(zr,y). Moreover, in the following

successful f-derivation for the program P and the goal
«—p(X), we underline the selected If-expression in each
resolution step and we also assume that: 8; = {X/Xi},
9;3 = {X/!’L, Xl/a,Yl/Yg}, 93 = {X/a,lea,Yl/b, Yrg/b}
and 8, = {X/a, X1/a,Y1/b,Ya/b,¥s/b}. So, the f-derivation
is

( p(X): id) —rm
<Fo—| ¢(X1, Y1), r(%1) [Ros| 1 61) — RS
{Los||Lo7 | s(Ya) ) [Ro.7); (J 102} —FR2
(rLosHLo7|UQ|R01|Tb)iR@s] 0s) —Fra®
(Los]|Lor] 0.9 Ror]0.7 [Ros|;0a) ~ R
(Los]0.63,0.7 10,) — PRa
(Los|0.63|Ros ) —FR3

(0.504 ;8,), with f.e.a. (0.504; {X/a}}).

In [1], the authors established the correctness results for the
Fuzzy SLD-Resolution operational mechanism (following a
technique similar as the one proposed by Lloyd, in [2], for
classical logic programming), but extending all results with the
treatment of truth degrees. As for the classical SLD-Resolution
calculus, we assume the existence of a fixed selection function,
also called fuzzy computation rule, deciding, for a given goal,
which is the selected If-expression to be exploited in the next
fuzzy SLD-Resolution step. For instance, when building the £
derivation shown in Example 3.3, we have used a computation
rule similar to the left to right selection rule of Prolog but
delaying the application of the [et;] and [et,] resolution rules
until all atoms have been resolved. Given a fuzzy computation
rule R, we say that a fuzzy SLD-derivation is via R if
the selected 1f-expression in every step is obtained by the
application of the mapping R to the corresponding goal in
that step. The following result extends to our fuzzy setting the
independence of the computation rule proved in [2] for the
pure logic programming case.

Theorem 3.4 (Independence of the Fuzzy Computation Rule):
Let P be a If-Prolog program, § = «Q a If-Prolog goal
and R a fuzzy computation rule. [f (G;id)—priz(r;f) is a
fuzzy SLD-derivation via R, with length n, then there exists

a fuzzy SLD-derivation (G:id)—prR (r:f) via any other
tuzzy computation rule R’, with the same length n.

[V, Fuzzy UNFOLDING OF If-Prolog PROGRAMS

As we have seen In the previous sections, the differences
between f-Prolog and If-Pralog programs appear only at the
syntactic level: whereas the body B of a (non unit) f-Prolog
program clause (which in essence, is no more than a simple
goal, that is, an atom or a conjunction of atoms) respects the
grammar B — B,..., B \ atom we need to enrich this set of
grammar rules with B — | number, if we really
want to cope with the pOSSll 1ty 0 mcludmg marks and real
numbers in the body of If-Prolog clauses (which inwitively
have the same structure of any initial, intermediate or final goal
appearing in fuzzy SLD-derivations). This implies that any f-
Prolog program is also an If-Prolog program, although the
contrary is not always true (i.e., the set of f-Prolog programs
is a proper subclass of the set of If-Prolog programs). Apart
from this simple fact (which, on the other hand, i1s mandatory
to define the fuzzy SLD-resolution principle) both languages
share all kind of semantics, like i1s obvious the operational one,
but also the declarative and the least fix-point ones and their
correctness/completeness properties, as described in [1].

As we know, the unfolding rule consists in essence in the
application of a symbolic computation step on (the selected
If-expressions of) the body of a clause which, in our fuzzy
setting, corresponds to the application of any of the four rules
described in Definition 3.1. Observe that this process always
generates clauses whose bodies include marks or numbers.
Hence, an unfolding transformation based on fuzzy SLD-
resolution is able to preserve the syntactic structure of If-
Prolog programs but, even in the case that original programs
be also f-Prolog programs, the transformed ones will never
belong to this subclass: the marks or real numbers incorporated
in the transformed clauses by unfolding steps (based on the
first or the second resolution rule) force the lost of the original
f-Prolog syntax. In order to avoid this inconvenience, our
following definition focuses in the general framework of If-
Prolog programs instead of the more restricted subclass of
f-Prolog programs.

Definition 4.1: Let P be an If-Prolog program and let C =
(A « B with « = p) € P be a (non unit) If-Prolog program
clause. Then, the fuzzy unfolding of program P w.r.t. clause
C is the new If-Prolog program P’ = (P — {C}) U ¥/ such
that: i = {Ao — B’ with a =p | (B;id)—rr(B;0)}.
There are some remarks to do regarding our definition. Sim-
ilarly to the classical SLD-resolution based unfolding rule
presented in [16], the substitutions computed by resolution
steps during unfolding are incorporated to the transformed
rules in a natural way, i.e., by applying them to the head
of the clause. On the other hand, regarding the propagation
of truth degrees, we solve this problem in a very easy way:
the unfolded clause directly inherits the truth degree « of the
original clause.

However, a deeper analysis of the unfolding transformation
reveals us that the body of the transformed clause, also
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contains ‘compiled-in’ information on both components of a
fuzzy computed answer (ie., truth degree and substitution).
Regarding truth degrees, we observe that if the unfolding
steps are based on the third or fourth rules of Definition
3.1, the marks and numbers in the body of the transformed
clause are simplified. Otherwise, the truth degree of the second
clause involved in an unfolded step based on clause or fact
resolution, is collected in the body of the transformed clause
adopting the form of marks or real numbers. Summarizing,
the propagation of truth degrees during unfolding is done at
two different levels: i) by directly assigning the truth degree of
the original clause as the truth degree of the transformed one,
and ii) by simplifying/introducing marks and real numbers in
its body. Those manipulations in the body of the clause will
affect drastically the computation/propagation of truth degrees
when solving goals against transformed programs. Let us now
illustrate all these facts with an example.

Example 4.2: Consider again program P shown in Example
3.3. It is easy to see that the unfolding of program P w.r.t.
clause Cy (exploiting the fact resolution rule of Definition 3.1)
generates the new program P’ = (P — {C3}) U {Ca5}, where
Cos is the new unfolded rule g{a,b)«-0.9 with o = 0.7.
On the other hand, if we want to unfold now clause C; in
program 7', we must firstly generate the following one-step
Fuzzy SLD-derivations (which only uses Rule 1 of Definition
3.1) where 8y = {X/a,Y/b} and 8, = {X/Y,Y/a}:
(@(X.Y),r(Y);id) —pm©s (Loz]0.9[Rorlr(b):60)

Los | r(Y1) |Ros | r(a); 61}
P’ — C1) U {C125.C13}

<Q(X1 Y)T‘(Y),Zd) —"FRICB {

So, the unfolded program P

where Cia5 = pla) «— 0.9 , r(b) with a = 0.8
and Ci3 = p(¥))— ,T(a) with o = (.8.
Moreover, by performing a new resolution step
with the second rule of Definition 3.1 on the body
of clause Cja5, we obtain the new unfolded rule
p(a) <— 0.9 [Ro7},0.7 with a = 08. Observe

that a subsequent unfolding step done now with the third
rule of Definition 3.1 leads to p(a) «+-0.63,0.7 with o = 0.8
which, finally, becomes p(a) +0.63 with o« = 0.8 after the
last unfolding step done with the fourth rule of Definition
3.1. It is important to note that the application of this last
rule to the goal «p(X) simulates the effects of the first
six resolution steps shown in the derivation of Example 3.3,
which evidences the improvements achieved by unfolding on
transformed programs.

The most important and practical purpose of the unfolding
transformation, apart from preserving the program semantics,
is to optimize code, independently of the object language.
Classical fold/unfold based transformation systems optimize
programs by retuming code which uses the same source
language, but unfolding has also played important roles in
the design of compilers (see [21]) which generate an object
code written in a target language. In this sense, our unfolding
transformation can be seen as a mixed technique that optimizes
f-Prolog programs and compiles it into If-Prolog programs,
with the advantage in our case that both programs are ex-

ccutable with exactly the same operational principle, apart
from sharing any other kind of semantics and related strong
correctness results. Moreover, the following result formalizes
the best property one can expect in a transformation like
our fuzzy unfolding, i.e., the exact and total correspondence
between fuzzy computed answers for goals executed in the
original and the transformed programs.
Theorem 4.3 (Strong Correctness of Fuzzy Unfolding):

Let P be a If-Prolog program and ¢ = «Q be a
[f-Prolog goal. If P’ is an If-Prolog program obtained by
fuzzy unfolding of P, then, (Qiid)—pr™(r;0) in P iff
(Qiid)y—pr*(r;#') in P’, where 8 = 0'Var(Q)).

V. FURTHER EXTENSIONS

The developments presented before admit several extensions
that may enrich not only the set of transformation rules but
also the considered language. At the first level, we plan for the
future to combine unfolding with other transformation rules in
order to increase its optimization power. Some simplification
rules are desirable, for instance the one that simplifies a clause
of the form A«n with o = g, where n is a real number, to a
new fact of the form A« with a = [et;](g, n).

On the other hand, it is important to note that some
semantics aspect of our language were let unspecified. We
have interpreted the operators ety and et as arbitrary t-norms
[et:] : [0,1]* — [0, 1]. Therefore, all our results are applicable
to a general class of fuzzy logic languages.

The concrete instances of If-Prolog can be established by
means of a directive: : - semantics (Tnorm, Label),
where Label is an atom indicating the meaning assigned
to the et; or ety operator. For instance, the directive
*:- semantics (et;, lukasiewicz).” interprets et
as a Lukasiewicz t-norm, that is, [et;](z,y) = maz{0,z +
y — 1). Other possible labels would be: min, if Jet,](z,y) =
min(z,y); product, if [et;](z,y) = z.y; etc.

As it has been told in [12], it may be useful from a practical
point of view to associate a concrete interpretation for each
operator et or ety in the context of a program clause instead
of a fixed interpretation for the whole program environment
(as we did in the previous case). A slightly modification of our
language is enough to deal with the new requirement. We can
redefine the concept of fuzzy theory to cope with this problem,

Definition 5.1: A fuzzy theory is a partial mapping T ap-

plying a triple (r,leq,les), in (0,1] x Sem x Sem, to each
formula, where Sem is a set of semantics labels indicating
the associated meaning for et and ety respectively. A void
value in Sem is employed to express that no meaning for et;
or ety 1s selected.
Roughly speaking, a program can be seen as a set of tuples
(C;r,leq,les), where C is a clause, but we prefer to write;
C with a=r and el=le; and e2=ley. [F clause C is
fact, le; and ley are void and we simply write: C with
a=r; omitting the values for le; and les. Now, a goal has
also associated a semantic label. Given a goal G, we write: G
with e2=le,.
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In order to manage the unfolding transformation process
properly, while extending the expressive power of our lan-
guage, it is necessary to parameterize the labeled roark
language of If-Prolog. The mechanism to remember that a
program rule was applied in former steps is expanded to
distinguish what is the meaning operator [eti] or [ety] that
must be applied. We introduce the marks | L, ret,,[et.) | 20d

jointly with the following medifications in the

Ry feta].fets]
fuzzy SLD-Resolution rules:

Rule 1. (Clause Resolution Rule)
(X, Am, ¥30) = pr
(Lo gotan fetal [P R feta] fetar
1) A,, is the selected atom,
2) 8 is an mgu of A4,, and A, .
3) P(A qes B) = (g, [et1], [et=]) and B is not empty.
Rule 2. (Fact Resolution Rule)
(X_, Am,?;ﬁ)—»FR((—X_, r,Y)0;90) if
1) A,, is the selected atom,
2) 8 is an mgu of A,, and A, and
3) P(A ges) = {r, void, void).
Rule 3. ([et,] Resolution Rule)

V)0 96) if

(X,| Ly etapieta] | T Ratetupfets | - V3 —Fr

(X, [et1](g,7),Y;¥) if r is a real number.
Rule 4. (Jet2] Resolution Rule)
(X Ry fet. ], fet2]

(X, La.etap et [let2] (7| Ry et etar p Y3 9)
if ¥ =7y, ..., (where n > 1), are real numbers,

oot et | ™ Fit)ors

Given goal G = «Q with e2 = [ets], the initial state in a
computation is { Ly void,fet,] | 2 RO,voirl,[[etz]] -id). This 1s
enough to overcome all the problems. Note also that results
shown in previous sections trivially hold for the new language.

VI. CONCLUSIONS

This work introduces a safe transformation rule for the un-
folding of fuzzy logic programs. To the best of our knowledge,
this is the first time this issue, of integrating transformation
techniques in the context of fuzzy logic languages, is treated
in the literature.

After an inspection of the main proposals for the inclusion
of fuzzy logic into a logic programming setting, we have
selected the language described in [1], that we call If-Prolog,
since we think it is the best suited to deal with the problems
that may arise in the transformation process of logic programs.
It is remarkable that [f-Prolog is provided with a labeled mark
language. We have extended this language in order to be able
to code different fuzzy logics inside the same program, which
greatly enhances the expressive power of the former language.

We have defined the unfolding of If-Prolog programs (Defi-
nition 4.1) and we have demonstrated the (strong) correctness
(Theorem 4.3) of the transformation rule. The results in this
paper can be thought as a basis to optimize fuzzy prolog

programs and they are the first step in the construction of a
fold/unfold framework for optimizing this class of programs.
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