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Abstract — Today’s field-programmable gate array (FPGA)
technology oifers a large number of 10 pins in order to realize a
high bandwidth distributed memory architecture. Our accelera-
tion platform, called Spiking Neural Network Emulation Engine
(SEE), makes use of this fact in order to tackle the main bottle-
neck of memory bandwidth during the simulation of large net-
works and is capable to treat up to 2!” neurons and more than
800-105 synaptic weights. The incorporated neuron state calcula-
tion can be reconfigured in order to consider sparse or dense con-
nection schemes. Performance evaluations have revealed that the
simulation time scales with the number of adaptive weights. The
SEE architecture promises an acceleration by at least factors of 4
to 8 for laterally full-connected networks compared to simulations
executed by a stand-alone PC.

I. INTRODUCTION

The examination of large spiking neural networks (SNNs) or
pulse coded/coupled neural networks (PCNNs) is mainly per-
fomed for two reasons. On the one hand, to understand and
reproduce the spike or pulse processing and on the other hand,
to use the results of this research for technical systems that pri-
marily undertake vision tasks, e, g. different image features are
separated by different phases of spikes of a neuron group rep-
resenting these features. A vision recognition system based on
spiking neurons is claimed to utilize two classes of connections
in order to solve different recognition tasks [1]. The task of fea-
fure extraction requires sparse connection schemes, e. g. feed-
forward or lateral nearest-neighbor connections, while the task
of dynamic association demands dense connections between
neurons. Associative memories based on spiking neurons for
instance require connections between neurons in a full-con-
nected fashion [2]. Among the five problem classes (calcula-
lion steps, communication resources, load balancing, storage
capacity and memory bandwidth) that have to be focused on
for simulation acceleration [3], the limitation in memory band-
width represents the main reason for poor simulation perfor-
mance [4]. The determining factor for this is that the most
limiting sequential part during the simulation is the data trans-
fer between the weight memory and the processing elements
(PEs) [5]. On this account, a digital acceleration platform is
essential that tackles this main bottle-neck problem by provid-
ing a distributed memory architecture and additionally pro-
vides programmablilty for the control software (SW) and
reconfigurability for the accelerating hardware (HW) imple-
mentation by FPGAs,

1. SPIKING NEURON MODEL WITH ADAPTIVE WEIGHTS

The targeted programmable spiking neuron model is a non-
leaky integrate-and-fire neuron (IFN) model presented in [6].
The formula of the membrane potential ay is defined as,

ag(1) = ch(!U)+£ [z,gszN W,\,L!(;)}dx (1)

where ¢ is the time of the last simulation event, iy represents63

the external input stimulus (grey pixel value of input image
that is normalized to values between 0 and 1), Ny is the number
of neurons sending a spike, and W, kL Tepresents the corre-
sponding presynaptic weight value, According to (1), neurons
receiving only a constant input current will always fire regu-
larly. This is in contrast to a leaky IFN model where the prod-
uct of input current and leaky-resistor have to be greater than
the firing threshold in order that the neuron fires periodically
[7]. The dynamics of the spiking neuron model evolve from the
time course of the synaptic weights and the presynaptic spike
activity. The various adaptation rules influence the time deriva-
tive of the synaptic weights. The utilized rule to determine the
SW execution time is stated in (2),
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where v is the decay constant, W is the gain factor, 0 is the
neuron-specific constant firing threshold, and Xy and X; repre-
sent the status of the post- and presynaptic neuron, respec-
tively. If the postsynaptic neuron is in a receiving state (X = 0)
and the presynaptic neuron in a sending state (X, = 1) the
exponential decay of the weight will be affected. Depending on
the membrane potential of the postsynaptic neuron the weight
acquires a potentiative (ag>0/2) or a depressive effect
(ag < ©/2) for the duration of the pulse width £, This kind of
weight adaplation achieves a synchronized firing for neurons
stimulated by similar external inputs and connected laterally in
a 4-nearest-neighbor fashion [6] even if the membrane poten-
tials of all neurons are initizlized with random values at the
start of the simulation.

III. FPGA BASED SIMULATION ACCELERATION

Academic FPGA based acceleration platforms, e.g.
RAPTOR2000 [8], and most commercially available FPGA
based prototyping solutions lack two substantial properties for
efficient and fast simulation of large PCNNs. They do not offer
the necessary high 10 bandwidths to external memory devices
for the continous update of adaptive weights and/or are not
equipped with sufficient on-board storage capacity in order to
prevent the interacton of a host computer for the bidirectional
transfer of weight values to the platform. Any digital accelera-
tor system with (IO bounded) off-chip memory is almost use-
less compared to any DSP or PC system which provides
comparable or better performance at a smaller price, shorter
time-to-market and higher availability [5].

A. SEE Architecture

The architecture of the Spiking Neural Network Emulation
Engine (SEE) consists of three FPGAs, each devoled to an
indispensable simulation task: simulation control (PPC2), net-

work topology computation (NTC) and neuron state computa-
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tion (NSC) [9]. SEE is characterized by its distributed memory
architecture realizing parallel memory accesses to event lists,
tag fields and weight memories, the parallel execution of NTC
and NSC by dedicated HW modules and the simulation control
by programmable SW code.

1) Simulation Control

The FPGA in charge of simulation control incorporates two
SW programmable PowerPCs (PPC, and PPC, ) that are availa-
ble in Virtex-II-Pro devices [10]. Both PowerPCs are able to
operate in parallel because SW code or variables can be depos-
ited besides instruction and data caches (IBRAM and
DBRAM) also in dedicated external memories (SRAM,, and
SRAM,), as illustrated in Fig. 1. Simulation control consists
mainly of three tasks: network configuration, network monitor-
ing and administration of event lists. The network configura-
tion is performed at the beginning of a simulation run where
network parameters are transferred via the serial interface to
the relevant memory locations of the SEE platform. During the
simulation, network parameters or network events can be mon-
itored and are temporarily stored in the shared SDRAM in
order to gain insights of potential or weight time courses and
neuron firing patterns.
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Fig. 1: Simulation Control by 2 embedded PowerPCs

In addition, two event lists have to be administrated: the
dynamic event list (DEL) and the fire event list (FEL). The
DEL includes all excited neurons receiving a spike or an exter-
nal input stimulus and is located in the memory location shared
by both PowerPCs. The FEL stores all neurons residing in a
sending state and the corresponding time values when the neu-
ron enters the receiving state again. This list is stored in the
SRAM accessible only by the PowerPC controlling the NSC
(see Fig. 1). The memory size of the DEL of 2 MB specifies
the maximum number of neurons that can be treated during a
simulation run, Neurons as well as time values are coded as
4 byte data. Considering the worst case scenario that all neu-
rons in the network can be excited at the same time, the maxi-
mum number of simulatable neurons within SEE leads to
512 K (2!%). The FEL has to provide a storage capacity which
is double in size compared to the DEL because of the addi-
tional time value for each neuron.

2) Network Topology Computation

The FPGA assigned to the NTC operates in two phases: the
topology-vector-phase and the topology-update-phase. For
these phases two tag fields are required that are realized by
dedicated SRAMSs: the fire tag field (FTF) marking every tiring
neurons and the excitation tag field (ETF) identifying every fir-
ing and excited neurons, as shown in Fig, 2. In the topology-
vector-phase, presynaptic activity i1s determined by reading
excited neurons from the DEL via the interface of the PPC2. A
position control module encodes the location of the neuron in

the FTF and the fire status of the connected presynaptic neu- 638

rons can be defined. These status information are gathered in
the tag-to-vector module and are send in form of a topology
vector to the NSC. A tag control module monitors the cutput to
the NSC and updates the ETF when the value of the topolovy
vector has been identified as zero and when the corresponding
neuron is not situated in the input layer where newrons receive
external stimuli. [n this case, the neuron is no longer in an
excited state and can be labeled as non-excited in the ETF,
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In the topology-update-phase, the tag fields are updated
depending on the occured fire-start or fire-stop events. At first,
neurons generating fire-start events are received via the inter-
face of the PPC2 and are momentarily stored in the SDRAM
memory (see Fig. 2). The tags of these neurons are updated in
the FTF and the ETF simultaneously by writing the corre-
sponding tag to both tag tields. Subsequently, neurons originat-
ing fire-stop events are obtained and only the appropriate tag in
the FTF has to be deactivated. At the same time, the neurons
stored in the SDRAM are read and by loading the tags in the
ETF the postsynaptic neurons can be detined that are affected
by the fire-start event and are not present in the DEL. Identi-
fied postsynaptic neurons are converted into neuron numbers
by the tag-to-neuron-number module and are written via the
NTC control module into the DEL. Finally, their excited state
is updated in the ETF by the tag set module.

3) Neuron State Computation

The FPGA responsible for the NSC in Fig. 3 consists of a
topology vector unit (TVU) that distributes the incoming topol-
ogy vectors from the NTC to the PEs that have a dedicated
memory channel to SDRAM memory modules. In these mem-
ory modules neuron information blocks (NIBs) for each neuron
are present that contain neuron-specific parameters, . g. mem-
brane potential and firing threshold, and all presynaptic
weights with synapse-specilic parameters, as decay constant
and gain factor.
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Neuron-specific parameters occupy 16 byte data while syn-
apse-specific parameters including the presynaptic weight
value are coded as 4 byte data. A total weight memory of 3 GB



leads to (3<230—219>16)/4 = 803-10° storable synaptic weight
values. The multiple channels to weight memory offer a high
memory bandwidth which is especially suitable for dynamic
synapses where the weight values have to be updated continu-
ously during the simulation and in which case necessary band-
width reducing methods like weight sharing [3], where groups
of neurons can share the same weight value because of the
static behavior of synapses, are not applicable. This approach
is therefore more sophisticated than a recently introduced
approach of a digital acceleration system considering synaptic
plasticity [11] where a central system controller manages the
data transfer to external weight memory via a single channel.
The NSC passes through two phases for each simulation event
time where numerical integration processes are performed:
next-spike-phase and network-update-phase. At the beginning
of each cycle for determining the next event time, the FEL is
read in order to specify the next time of a fire-stop event. In the
next-spike-phase, a numerical integration of all excited neurons
takes place in order to decide if within the time interval of cur-
rent simulation time and next fire-stop event a fire-start event
occurs. Among these two event types the sooner arriving event
15 identified as the next simulation event and in the network-
update-phase all neurons and synapses in the network have to
be updated by numerical integration to this new simulation
time. In order to provide a high degree of flexibility for neces-
sary changes to the neuron model as well as to obtain a fair
comparison to the execution time of the numerical mtegration
by SW, we decided to pursue a numerical rather than an analyt-
ical implementation. SW simulations have revealed that the
Bulirsch-Stoer integration method [12] offers the best compro-
mise between numerical accuracy and computational effi-
ciency compared to Ist-order Euler and 4th-order Runge-Kutta
integration methods, Especially, with the additional complica-
tion in PCNNs that each neuron’s firing can influence other
neurons, lst-order-accurate or fix time-step integration meth-
ods can artifactually synchronize neurons at the expense of
proper network dynamics [13]. The Bulirsch-Stoer integration
method incorporates two arithmetic operations [12]: a modi-
fied midpoint integration (MMID) and a polynomial extrapola-
tion (PZEXTR). The MMID is characterized by the fact that
within the predefined integration interval H, which is divided
into substeps of size A, the calculation of intermediate function
values &, ; needs the derivative and the function value of pre-
ceding substeps £, and £, _,, respectively. The formula for
intermediate function values and the final function value Y, are
stated in (3) and (4) [14]:

ki) =k 2k flxtm k) 3

(4)

For dense connectivity schemes, e. g. full-connected layers
with a significant number of synaptic weight values, these
intermediate function values cannot be temporarily stored on
the FPGA. In this case, the FPGA has to be reconfigured in
order to provide a single PE able to access all three memory
channels, indicated by the dotted line grouping all PEs in
Fig. 3. With this kind of configuration two data can be read in
parallel (&, &, ;) while the computed data (£, ;) is written
back simultaneously via the third memory channel.
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IV. SIMULATION ACCELERATION PERFORMANCE

In order to evaluate the simulation acceleration performance
sigle-layer architectures with five different sizes, ranging
from 10? to 302 neurens, and with sparse connection schemes
(4-nearest-neighbor (4n) and 8-nearest-neighbor (8n)) and
dense connection schemes (laterally full-connected (fc)) were
simulated. Each simulation was executed until the network
time of 500 ms was reached, Each neuron’s membrane poten-
tial was initialized randomly between values of 0 and 1 @ =1,
7y = 1 ms) and each synaptic welght was initialized with 0,12
(r=04,u=103).

A. Software Execution Time

During the SW simulation running on a Linux-PC (2.4 GHz
Pentium-4, 1 GB RAM) four variables were monitored; num-
ber of simulation event times (NgyeyT), number of performed
numerical integrations per neuron (Npsstep), number of inte-
gration interval changes (V) and number of substep-divisions
per numerical integration process (V).
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Fig. 4; Simulation Events vs. Performed Numerical Integrations

Fig. 4 shows Ngppyrand N sssrep for all performed simula-
tions. It can be noticed that Nepeyr for different connection
densities is very similar. The reason for this is that in the case
of a full-connected connection scheme more than one neuron
are generating an event at the same simulation time. However,
Npssrep significantly differs for varying connection densities
because for dense connectivities significant numbers of neu-
rons become excited by a spike and have to be undertaken in
the next-spike-phase for numerical integration.
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Fig. 5: Integration Interval and Substep-Division Changes

For full-connected networks Ny, and Ny is summarized in
Fig. 5. It is apparent that nearly no changes for the predefined
1 were necessary (Hypg=Ny/Ngserep=1). This is high-
lighted by the horizontal dashed lines in Fig. 4 and Fig. 5.
According to Ny, it is visible that on average more than 2 sub-
step-divisions within 5 were accomplished, which leads by
rounding off to 7, = N,/Nyeoren=3. Additionally, the total
SW simulation time Ty is highly dependent on the number of
adaptive weights Nwereyr that have to be considered during
the simulation. This is demonstrated in Fig. 6, where T, and
Nwgigrr are presented for all performed simulations (please

note the logarithmic scale and the representation of the simula-
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Fig. 6: Synaptic Weights vs. Software Simulation Time

tion time by the right axis for better visibility). The SW simula-
tion time for a network with 30% neurons connected in a
laterally full-connected fashion takes more than 4 days
(352460 s).

B. SEE Simulation Time

The simulation time of the SEE platform Tggp can be esti-
mated by the following formula,

N . Nyeurown
BSSTEP _Nm“’*

Tspe “Terk Tneuron(n) (5)

where Nygroy 18 the number of simulated neurons, Ny, is
the number of parallel usable memory channels, Ty g is the
opreating clock period and Tygyrow 15 the number of clock
cycles required for the numerical integration for each neuron
depending on the number of presynaptic weights n. Typurow
in (6) is divided in the execution cycles for MMID and
PZEXTR and depends on the average number of integration
interval and substep-division changes H 4y and 1y, respec-
tively.

Lyvg—1

Tyeuron = Have Y Taup(n )+ Tpzgxrr(n D1 (6)
=0

For performance evaluation only the execution cycles of
MMID were considered that can be regarded as the most time
consuming task for the numerical integration (see Fig. 7).
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(R/W = Read/Write Tasks of Synaptic Parameters)
The duration of the HW module that realizes the MMID
operalion is given by,

Ty = Uspram* taap T ceil(n/2)]-[2-(i+ 1} +1]1  (7)

where g4 18 the worst case SDRAM latency of 10 clock
cycles and ¢yp 1s the clock cycle latency before the first data
appears to be valid at the output of the pipelined HW module.
The derivation of the synaptic weights in (2) required by the
MMID incorporates two parallel multiplications (y-term and p-
term) that require 4 clock cycles each. The total number of
clock cycles for the derivation leads to 6 which sums up to 12
clock cycles for tyh4p. The term »/2 in (7) accounts for the
fact that according to the 8 byte wide data bus of the SDRAM
modules two synaptic weights are read at the same time.
Assuming a clock frequency of 50 MHz (T = 20- 107 s) and
only one PE (N5 = 1) using three memory channels in order
that the duration in (7) is valid for laterally full-connected net-

works, the simulation time Tsgz angp for the MMID can be640[

calculated by (5) and (6) for different numbers of synaptic
weights (n = Nyzprons Havg = 1. Layc = 3) and is outlined in
Table [. The acceleration factor is given by the relation of
required SW simulation time Ty ynqp (see Fig. 6 and Fig. 7)

and Tsge_ -

TABLE 1
SW aND SEE SIMULATION TIME FOR FULL-CONNECTED NETWORKS
n | Ngsstep | Tswmwmin = % Tsw | Tsge-mmip || Fsprep-up
100 13064 0.593-421 s 29s 8.6
225 31063 0.374-4053 s 284 5 53
400 57320 0.541-23024 5 1528 s 8.2
625 95140 0.255-97920 s 5976 s 472
900 143756 0.356 - 352460 s 183215 6.8

V. CONCLUSION

We have presented a promising FPGA based simulation
acceleration platform, called SEE, that is suitable for the exam-
ination of large PCNNs. Even for laterally full-connected net-
works acceleration factors of 4 to § are achievable for the
computational intensive numerical integration part. Sparse
connectivity schemes permit double-digit acceleration factors
[9]. The simulation and design environment of SEE allows the
functional verification of implemented HW and SW modules,
but the overall simulation under real-lime conditions of such a
highly parallel operating digital system is hardly feasible. Cur-
rently, the schematic design of the SEE prototyping board has
been completed which allows the further development steps of
printed circuit board (PCB) layout and manufacturing in order
to confirm the evaluated SEE performance.
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