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Abstract — In the paper constraint handling methods for
Generalized Predictive Control are analyzed, based on its
polynomial equivalent structure, This, known as RST
Structure in the literature, has been further modified to
obtain a two-degree-of-freedom Tnternal Model Control
structure. From an applicative point of view, three control
structures for anti-windup measures have been analyzed, for
two benchmark type plants. The best behavior is obtained if
the saturation is led back within the control structure.
Simulations have been performed and their results presented
in tables and diagrams.

[ INTRODUCTION

Constraints in Generalized Predictive Control (GPC) can
lead to serious problerms if they are not treated properly. As
far as constraints of the control signal are concemned, they
can be incorporated into the cost function, and also dealt
with separately. It is well known that every GPC algorithm
can be transformed into a polynomial control structure [1]
(known as the RST structure). This equivalent structure is
transformed into a two-degree-of-freedom Internal Model
Control (IMC) structure, which, for stable cases, 1is
equivalent to the Youla parameterization. The IMC
structure for GPC is given here and different types of
constraint handling are presented, taken into account the
GPC parameters, exemplified on benchmark systems.

Il RST AND IMC STRUCTURES OF GPC
A. Derivation of RST and IMC Structures

As presented in [1], the GPC can be casily converted
into a polynomial structure, in case if there are no
constraints. When defining the GPC algorithm, the SISO
plants that are linear or linearized can be described by the
tollowing equation (the CARIMA model):

Alg)p(0) = 2""Blg " ut~1)+ cmﬂ% (1)

where u(1) is the control sequence and y(t) the output
sequence, eft) is a zero mean white noise,  is the
malhematical dead time (physical + 1). Polynomials A, B
and C are described in the backward shift operator ¢
AlgY=1+aq" +..+a, g™ (2)

B(q_l)zbqul totb,g™ (3)
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Clg)=l+¢g" ot c,g ™ 4
and A=1-g (5)

The C polynomial is chosen for 1, for simplicity [1].
Defining the cost function that is minimized in order to
obtain the control scquence to be applied in the GPC
algorithm as follows:

¥, W,
J= 2SN 10 -re+ PF + 3 2, e+ j-nf ©)
J=M J=l

where N, and &, are the limits of the prediction horizon, &,
is the control horizon, J(+jl6) is the j-step ahead
prediction of the output, rft+;) is the future reference
trajectory and d¢j) and A(j) are weighting sequences. By
minimizing the cost function, an optimal value for the
future control sequence is obtained. If only the first
element of the control signal sequence is sent to the
process (receding horizon strategy), alter the minimization
the control law is obtained:

Au(t)=K (r-f)= ik, re+p-fe+p] (D

Iy

where K is the first row of the matrix (G" G+1)"G", fis
the free response, r is the reference signal, see [1].

If the GPC is unconstrained, then a polynomial structure
can be obtained (see Fig. 1.), which can be posed in the
classical pole-placement structure. P stands for the plant
transfer function including the dead-time.

The control signal results in form of:
Rla™DAu =T(g )0 -S(g™"wny @

where R, S, T are polynomials in the backward shift
operator. If the plant model is given by:

Yu

Fig. 1. RST polynomial control structure
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to determine the controller, a Diophantine equation has to
be solved:

T(g")=E,(gHad(g™)+q7F (g™) (10)

where j is the length of the prediction horizon.

The T polynomial can be treated as a filter, It plays a role
in disturbance rejection, and also it is mentioned [1] that it
can influence robust stability. Solving the Diophantine
equation and choosing T(g")=1 for simplicity, the final
expressions of the R, § and T polynomials will be [1]:

T(q™)+q" Yo kil

Tk

ZowkF,
ok

where /; are the rows of vector G

The RST polynomial structure can be transformed into a
two-degree-of-freedom Intemal Model Control (2DOF-
IMC) structure, as seen in Fig. 2. Deducing step by step the
equivalence between the two structures, the following
results are obtained:

(1

R(g™")=

S(g™) = s Flg™)y=1 (12),(13)

Clg™y= : 1S(q")lA(q") : 3 (14)
Fy (g™ NR(g™HAA(G™ )+ S(@)Blg g ™)
C I AT (13)
Sig™) Fu(g™)

In equation (15) the two members on both sides must be
proportional. In the examples presented, the two have been
taken for equal, where F, insures servo performance and
F,, disturbance rejection.

As it is well-known, the IMC structure, in this form (Fig.
2), is valid for stable plants only. In case of unstable plants
the Youla parameterization is used.

The IMC structure has many advantages over
conventional control. For example, if there is no noise and
no mismatch between the plant and its model, then open
loop control is obtained [2],[3], and the controller can be
designed simply as a realizable quasi-inverse of the model
of the plant. The closed loop control structure will work
against mismatch and noise rejection.

B. Constraint Handling in Case of RST and IMC
Structures

In practice, when there is a control system, they are
always subject to different kinds of constraints. In what
follows, constraints of the control signal u(t) are dealt with.
Starting from the RST structure, one way to handle
constraints is presented in Fig. 3. It is not a very fortunate
choice since in this case the control signal is simply cutup,
which may lead to integrator windup which can produce
unwanted behaviors of the system, even lead to instability.
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Fig. 3. Constrained RST structure

Constraints of the control signal can be incorporated into
the IMC structure, for example see [4]. In Fig. 4 the
control system is presented. The advantage of this structure
is that the same control signal is applied both to the plant
and to the internal model; C itself does not contain
integrating effect, which is introduced through the IMC
feedback.

In addition, the anti-windup property of this structure
can be improved by realizing the IMC controller in a
feedback of the saturation [5] (Fig. 5). Its advantage is that
it takes into account also the dynamics of the controller.

The limited input of the plant provides the input for the
controller in the feedback.

For a given controller C, the Cp;, controller that feeds
back the saturating element can be calculated according lo
the following relation:

4 Clg™-1
CLim( ):%‘ (16)

Special attention must be paid at the implementation of this
control structure. An algebraic loop will appear in this
case, so measures avoiding it have to be dealt with. One
way to handle this is to separate the constant component of
the partial fractional representation of Cp,, and to
incorporate it in the slope of the saturation.

Fig. 4, IMC structure with limitation inside the mode
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Fig. 5. IMC structure with controller in the feedback
of the saturation

III. EXAMPLES

For exemplification, two plant models are taken (a first
and 2 second order one, both without dead-time), and the
polynomial structures are derived for different GPC
parameters. Moreover, the effects of saturation are
presented according to the three schemes (those from Fig,
3, Fig. 4 and Fig. 5),

A. Case of a First Order Plant

Let the plant transfer function be:
P (17)
I+s

Choosing a sampling time of 4=0./ sec, the pulse transfer
function assuming zero order hold is computed:
Pizy= 0.09561 (18)
z-0.9048

Let in the first case the parameters of the predictive
controller be:

N, =1 N, =3 (19)
N, =1 2, =0
The resulted RST parameters will be:
R =0.2037
§=2.9366-1.9366 2" (20)
T=1

The parameters of the 2DOF-IMC structure will result as:
F o=l
F, =2.9366-1.93667"

4.9098 - 4 443 7
1-0.5328 2"

@h
C=

The zeros and poles of the controller are (in z-domain):

C(z) = 4.9098 2209048 (22)
z-0.5328

Accordingly, the feedback controller Cron has the

parameters:
C_[_,m (Z) = 0.7963z -0.7963 (23)
z-0.9048
It is also interesting to see how the open loop transfer

function looks like:

046723 :

L(DN=Cz)P(z) =22 (24)
(@) =CPe =—"2=

Simulation results, when no constraints are given, are

presented in Fig. 6. The reference signal is a step, and a

step disturbance of amplitude -1 acts on the input of the

plant at time point 10 sec,

Suppose there are constraints imposed on the control
signal, in such a way that it is limited to u,,=2.5 and
Uniw=-2.5. The three above mentioned ways of constraint
handling are presented; simply cut the signal (Fig. 3), IMC
inner saturation (Fig. 4) and saturation in feedback (Fig. 5).
The simulation results are depicted in Fig. 7. It can be
noticed that the output signal in case of feedback saturation
proves to have the closest behavior to the unconstrained
case. As far as the control signal is concerned, also the
same results can be stated,

In case of GPC, the tuning parameters can be modified
in order to obtain better performance, from the required
point of view. Some further simulations have been
performed, and the results are presented. The parameters of
the controllers that are obtained are summarized in Table L.
It can be noticed that the controller C(z) is always a form
of'a quasi inverse of the plant’s transfer function, canceling
the pole of the plant with a zero. Its poles are differing as
the predictive parameters are modified.
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Table I

No [N, [ Ny | Ny | M R S T C(z) L(z)=C(2)H(z)
1] 3 1 0 02037 | 2.936-1.93627 | | z— 4672
z 4.9008 0.9048 0.46723
z-0.5328 z—-5328
2 1 3 1 | 0.01 [0.3691 2.62-1.6277 1 27093 z (z - 0.9048) 04911z
(z - 04843) (z-0.0476) z* -0.5319 z +0.02306
3|1 3 1 0.1 [0.4626 2.62-1.6227 1 216152 (z-0.9048) 0.3918z
z'-0.7921z+0.1839 z° -0.7921z+0.1839
4 |1 5 1 0.1 [0.5753 | 3440124417 | | 1.7379 z(z-0.9048) 0315z
(z-0.6391) (z-0.07592) z? -0.735 z + 0.05004
s 1] 10 1 0.1 |0.7268 | 4.2181-3.2181z" | 1 1.3759 2 (z - 0.9048) 0.2494 z
(z-0.7451) (z-0.02165) z'-0.7667 z + 0.01613
6 | 1 | 10 3 0.1 [0.4844 |2.3883-1.3883z" [ | 2.0646 z(z - 0.9048) 03742z
z” -0.9249z +0.2992 7% -0.9249 7 +(0.2992
717110 7 0.1 |0.5134 |2.4396-1.439627 | 1 1.9477 z(z - 0.9048) 0.3531z
z' -0.9574z +0.3105 27 -0.9574 z+0.3105

A. Case of a Second Order Plant

For the second order plant example an oscillating one
has been chosen. Let its transfer function be:

P(s) = (25)

25t +s5+1

Choosing a sampling time of ~A=0.4 sec, the pulse transfer
function is computed:
0.03722z + 0.03841

P(z) = (26)
z? - 1.7472 + 0.8187
Let the parameters of the predictive controller be:
N=1 N,=3 N, =l A4,=0 (27
The resulted RST parameters will be:
R=02176+0.1386z"
§=6.3202-8.5801z" +3.2698z" (28)

T=1

The parameters of the 2DOF-IMC structure will result as:

F =1 F, =6.3202-8.5801z" +3.2698z" 55
 (4.5942-8.025z" +3.761z7) )
T (1-1.0292" +0.360327)
The zeros and poles of the controller are (in z-domain):
22 +0.8187
C(z) = 4.5942 (z" -1.747z + 0.8187) (30)

(z® -1.029z + 0.3603)

The controller has a pair of complex conjugate poles and
zeros. The zeros cancel the poles of the plant. Accordingly,
the feedback controller Cy,, has the parameters:

0.7823z% -1.523z2+0.7403

. €2
z’ -1.747z+0.8187

Cow(2)=

The open loop transfer function looks like:

L(z) = C()P(z) = 0.11098
() =C(2)P(z) 2% -1.0292+0.3603

Simulation results, when no constraints are given, are
presented in Fig. 8. The reference signal is a step, and a
step disturbance of amplitude -1 acts on the input of the
plant at time point 30 sec.

Suppose there are constraints imposed on the control
signal, in such a way that it is limited t0 u,,,.=2 and u,,;,=-
2. The three above mentioned ways of constraint handling
are presented: - simply cut the signal (Fig. 3); - IMC inner
saturation (Fig. 4); - saturation in feedback (Fig.5).
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Fig. 8. Simulation results for no constraints,
Second order plant

The simulation results are depicted in Fig. 9. It can be
noticed that the output signal in case of feedback saturation
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proves to have the closest behavior fo the unconstrained
case. As far as the control signal is concerned, also the
same results can be stated,

Also in this example of a second order oscillating
process, the effect of changes of the GPC tuning
parameters are studied. These six obtained controller
parameters are summarized in Table 1I. Also in this case it
can be noticed that the controller C(z) is always a form of a
quasi inverse of the plant’s transfer [unction, canceling the
poles of the plant. The introduced dynamics differs as the
predictive parameters are modified.
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Fig. 9. Simulation results, constrained case,
second order plant

I1l. CONCLUSIONS

In the paper the IMC equivalent of GPC structure has
been derived. From an applicative point of view the
problem of constraint handling of the control signal with
different anti-windup measures with for quick leaving of

two benchmark type plants which can be frequently found
in applications of process control.

From the presented anti-windup measures the most
efficient proves to be the one that feeds back the saturation.
In all cases, the control systems have been tested through
simulation,
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saturation zone is also dealt with for the GPC and IMC
structures. There are analyzed three control structures for
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