Clustering Technology of a
Data Engine for Analytical Computing

Ratko Orlandic
Department of Computer Science
[linois Institute of Technology
Chicago, IL 60616
Email: ratko@cs.iit.edu

Abstract— Contemporary scientific studies frequently rely on
data-intensive analytical computing. While the main goal of
this emerging form of computing is to facilitate hypothesis
formulation or to test the validity of a postulated model, its
primary method is usually that of data clustering. Since typical
analytical tasks operate on very large volumes of potentially high-
dimensional data, scientific studies also face enormous problems
of scale. This paper describes the clustering technology of a new
engine for data-intense analytical computing. The technology is
designed to operate in high-dimensional feature spaces without
requiring dimensionality reduction. This enables the data engine
to achieve high degrees of scalability and high interoperability
between the analytical tasks. Most processes supported by the
engine operate on a shared aggregate representation of data in
the original feature space.

Keywords: scientific databases, data mining, data clustering, data
dimensionality.

1. INTRODUCTION

Since typical scienti ¢ studies are conducted on large vol-
umes of potentially high-dimensional data, the data-rining
facilities used in these studies must cope with enormous
problems of scale. For example, due to the high dimensionality
of the high-energy physics (HEP) data [13], the indexing tech-
niques appropriate for these environments must be radically
different from traditional multi-dimensional access methods.
Ensuring that large volumes of HEP data can be clustered
both accurately and ef ciently is yet another problem that has
eluded researchers thus far.

In a typical representation of scienti ¢ data, each data item
(raw data) is depicted by a potentially large number d of
descriptive attributes represented as numeric or enumerated
types [13]. This swmmary information is interpreted as a
feature vector (point) in a d-dimensional space. A typical
scienti ¢ experiment begins by retrieving from a large data
repository all items that satisfy a carefully constructed search
predicate, which usually involves range speci cations over a
subset of the intrinsic properties of summary data. Later, the
selected set grows through incremental updates by requesting
new items that satisfy the predicate. Several ongoing research
efforts deal with the problem of retrieving data from massive
data repositories [6], [8], [13]. However, the focus of this
research is on data analysis, once the appropriate subset is
retrieved and stored on the designated execution site.

Ying Lai
Department of Computer Science
[linois Institute of Technology
Chicago, IL 60616
Email: laiying @iit.edu

We are currently developing a generic data engine for
ef cient storage, retrieval, and analysis of complex scien-
ti c data, called EGALITE (EnGine Jor AnaLytical sTudiEys),
which tightly couples the concerns of data clustering and
data retrieval. Using this engine, the scientist/analyst would

rst cluster the given set of multi-dimensional data and start
analyzing it by performing aggregate functions, projections of
data or clusters onto different sub-dimensional spaces, assess-
ing similarities between data items, or just browsing through
subsets of particular interest. This process is usually repeated
many times with different clustering parameters before the
attention is turned onto a different set of data.

The engine is designed to satisfy the following main re-
quirements: (1) functionality: it must support an integrated set
of different retrieval and clustering techniques; (2) scalability:
the techniques must deal effectively with large volumes of
high-dimensional data; and (3) interoperability: the techniques
must interact well in order to facilitate bundled operations of
typical analytical tasks. Most analytical tasks supported by this
engine operate on a shared aggregate representation of data,
which facilitates the interoperability of analytical tasks.

The interoperability concems of the engine s design are
diverse. As an example, consider the subtle interdependencies
between the problems of data clustering and data or cluster
projection, If the clustering method employs dimensionality
reduction, it is likely that even a simple operation such as
the projection of clusters onto a subset of data dimensions
would trigger expensive re-clustering of data. This would be
the case if the principal components [3] on which the data set
is clustered do not include at least one dimension on which the
clusters must be projected. In contrast, if the data is clustered
on all dimensions, the operation of cluster projection is greatly
facilitated. It is also important to note that dimensionality
reduction employs a set of static decisions, which can impede
the uid and highly dynamic process of analytical thinking.

Obviously, both scalability and interoperability concerns
imply a need for a clustering technology that can operate
effectively and ef ciently in high-dimensional feature spaces
even without dimensionality reduction, The clustering technol-
ogy of EGALITE, called GARDEN (GAmma Region DENSsity)
clustering, is designed with this goal in mind. The focus of
this paper is on this novel clustering technology. In [8], we

699

outlined the general principles of GARDEN clustering. How-
ever, two of its constituent algorithms, called GARDEN g and
GARDEN;p, are described in this paper for the rst time.

To provide high degrees of scalability to the growing
dimensionalities of scienti c¢ data, the algorithms of GARDEN
clustering build on the properties of a new space-partitioning
scheme, called T" [10]. In fact, it is the application of this
partitioning strategy that enables GARDEN clustering to avoid
the need for dimensionality reduction.

In the rest of this paper, Section 2 gives a schematic design
of EGALITE and describes the aggregate representation of
data. Sections 3 and 4 describe the operation of GARDEN pp
and GARDENgp, respectively. Section 5 summarizes the paper
and discusses the ongoing development of the data engine.

I1. DESIGN OF THE DATA ENGINE

Figure 1 shows the main components of EGALITE, which
include: an ef cient and scalable indexing technique for data in
high-dimensional spaces, called I'szx [9]; a new access method
for similarity searching in multi-dimensional spaces, called
T'vy [9]: as well as GARDENyp and GARDENgp described
later in this paper.

user interface

high level operators

routine for routine for
deriving the similarity
space partition scarching

access method for

data-clustering region queries

module

underlying indexing technigque

storage manager

Fig. 1. Schematic design of the data engine.

The engine is designed to maximize code reuse. In partic-
ular, the facility for similarity searching (I'yy) runs on top
of the access method for region queries (I sz x), which is
implemented by reusing a more traditional indexing technique
[9]. Other than for clustering data, the GARDEN gp clustering
technique is also used by the process of deriving an appropriate
representation of data.

For each data set, the engine maintains an overloaded
aggregate representation, which is based on a new partitioning
strategy for multi-dimensional spaces, called I" [8], [10]. The
advantages of " over traditional space-partitioning schemes
are especially pronounced in high-dimensional situations. For
example, in order to split each axis of the given d-dimensional
space at least once, a typical grid-like space partition would
create at least 2¢ different regions. In contrast, the T strategy
can split each axis multiple times while creating only O(d)
regions. While each point in the space has a neighborhood that
is exponential in the number of dimensions, each regionina T"

space partition has only O(d) neighbors. Therefore, the I parti-
tioning strategy effectively attacks certain kinds of exponential
explosion associated with more traditional space-partitioning
schemes. It is this effect of I" that allows GARDEN clustering
technology to avoid the need for dimensionality reduction,

In a T" space partition, the d-dimensional universe is stat-
ically partitioned by several nested hyper-rectangles, which
we also call generators. The space inside one and outside
its immediately enclosed generator de nes one I' subspace.
Except for the innermost subspace, every I" subspace is further
divided into d rectangular I" regions, by means of d-1 hyper-
planes, each lying on an outer side of its inner generator. With
m generators, there are up to [+ (m— 1) -d different I regions
in the space [10].

Each T region can be further partitioned along different
dimensions into several hyper-rectangular slices. With an
additional measure, I" space partitions can also eliminate po-
tentially signi cant amounts of dead (empty) space associated
with skewed data distributions. Toward this end, for each T’
region or slice, it is appropriate to maintain dynamically its live
region, i.e. the minimum bounding hyper-rectangle enclosing
all points of that region or slice.

22

]

Fig. 2. Aggregate representation of a 2-dimensional data sel.

In EGALITE, the aggregate representation of data is a main-
memory structure used to support region queries, similarity
searches, and other analytical tasks. Since the representation
also provides an approximate description of the data clusters,
it can be augmented with summary information about the
clusters in order to facilitate aggregate operators (hence, its
name). As illustrated in Figure 2, this structure also represents
a static I" space partition with possible slicing of the T regions.
In the gure, solid lines separate I" regions, whereas dashed
lines separate slices of the I regions,

Due to the process of deriving the aggregate representation,
which employs GARDENy, and GARDENge techniques,
every I' region or slice cormresponds to a cluster of data.
However, certain large or irregularly shaped clusters could be
broken into two or more slices. The live portions of the T
regions or slices (dark rectangles in Figure 2) approximate the
locations of the corresponding data clusters.

For each T" region or slice, the aggregate representation

700

maintains: its live portion; its cardinality (the number of points
in the region or slice); its cluster representative (e.g., a data
point lying close to the middle of the live region), which
is used to facilitate similarity searching; and possibly some
other parameters, e.g. the descriptive scalar values required
for ef cient processing of typical aggregate operators.

The basic processes of EGALITE include initial and in-
cremental loading of data, retrieving data based on either
similarities or multi-dimensional selections, as well as data and
cluster projections. The process of initial data loading starts
by constructing the aggregate representation for the given
data set. Then the summary parts of data are inserted into
a primary index structure, which is based on Tsix [9]. While
Usck supports ef cient region queries in multi-dimensional
Spaces, many analytical tasks require a specialized access
method for similarity searching. Our Tyy for similarity (k-
nearest neighbor) searching [9] operates on the aggregate
representation of the clustered data set maintained by the
underlying Tg; g index.

The process of cluster projection involves two steps. In the

Ist step, the live regions in the aggregate representation of
data are simply projected onto the desired subset of dimen-
sions. In the second step, the process performs merging of [ive
regions whose projections in the targeted space overlap.

The process of data projection rst performs cluster pro-
jection onto the targeted sub-dimensional space. Based on the
knowledge of data clusters in the projected space, it applies
GARDENgp to select the aggregate representation for a new
Isex index. Following that, the projected summary items
are inserted into the new index. Each such insertion must
dynamically update the live portion, the cardinality, and the
cluster representative of the correspending region or slice in
the aggregate representation of the projected data,

ITI. GARDENg; CLUSTERING TECHNIQUE

It is well known that contemporary clustering algorithms
[2], [5] do not scale well with the increasing volumes and di-
mensionalities of data. Typical limitations of these algorithms
are some implicit restrictions on the data-set size [15] or that
they require a priori knowledge about the clusters [5]. The
popular cell-based clustering techniques [11], [14] generally
apply grid-like space partitions into rectangular cells whose
number grows exponentially with data dimensionality. As a
result, in high-dimensional spaces, these algorithms require
some form of dimensionality reduction. While dimensionality
reduction is useful in many situations, it often results in a
loss of clusters as well as the distortion of both the spatial
properties and densities of clusters. Other problems associated
with it are discussed in the summary of this paper.

Our GARDENyp clustering technique falls in the general
class of cell-based and density-based clustering methods [1],
[4], [11], [12]. It is appropriate in low-dimensional situa-
tions, but its main advantage is that it can operate in high-
dimensional spaces even without dimensionality reduction [7].
The subscript of its name emphasizes this fact. The operation
of the technique is governed by two basic parameters: 3, the

O S

(e)

Fig. 3. Illustration of the GARDENyp operation.

high-density threshold for dense regions, and , the mininunm
distance along a single dimension between two distinct clus-
ters.

GARDENyp applies a recursive partition of sparse regions
in the space using a variant of the T" partitioning strategy [7].
In fact, it is the application of the T strategy that enables
GARDENyp, to avoid the need for dimensionality reduction.
This is because I' can split every axis of the feature Space
within linear space complexity. This, in turn, means that
its recursive application will eventually detect the separating

gaps between any two dense clusters. Since each T region
has a relatively small neighborhood, merging of dense regions
is also fast. As result, GARDEN;p can operate ef ciently in
high-dimensional situations, detecting the clusters of virtually
any shapes or spatial orientations. With appropriately chosen
parameters § and , this algorithm runs in virtually guaranteed
O(nlogn) time [7].

Figure 3 illustrates the basic operation of GARDENyp,
which is performed in three steps. The rst step selects
the initial T" partition of the given d-dimensional space and

inserts in it all data items, computing the live portions of

each I" region. The result is illustrated in Figure 3a, where
the dark shapes consisting of one or more ovals represent
different clusters of data. While the initial T partition can
be derived using an arbitrary number m of nested hyper-
rectangles, which can be chosen in proportion to the number
of points in the given data set, subsequent partitions of live
regions are produced using a single inner generator.

The second step, illustrated in Figure 3b, applies a recursive
partition of live regions using the " partitioning strategy. As
shown in the gure, sparse live regions whose density is below
& (in the gure, those are live portions of the I' regions 1,
2,4, 6 and 7) must be recursively partitioned until all their

701

dense sub-regions are identi ed, Each time a region is split, its
points are re-examined in order to compute the live portions
of the sub-regions resulting from the split. Normally, when
the density of a live region exceeds the high-density threshold
(see the live portions of the regions 3 and 5 in Figure 3b), the
live region is immediately included into a temporary set of
clusters. However, as we will see, for highest accuracy, even
some dense live regions may need to be split further.

In the second step, the algorithm must decide how to split a
live region that needs to be partitioned. The problem is that a
live region enclosing two or more smaller clusters may become
so elongated along certain dimensions that its partition using
the original T strategy [10] may not be bene cial. In particular,
since the original I" strategy may create narrow regions along
the upper boundaries of the base region that is being split,
some regions may be so narrow that they could become dense
even if they have just a handful of points. Such live regions
may erroncously bridge two or more distant clusters, making
them arti cially a single cluster.

Because of this issue, GARDENyp performs the partition
of a live region LR taking into account its properties. First,
it orders the sides of LR according to their extension from
the longest to the shortest side. Then, it computes the I" sub-
regions following the given ordering of the dimensions, which
improves the squareness of the resulting sub-regions. Further
improvements in this regard are obtained by not splitting the
sides of LR that are much shorter than its longest side [7].

The third step of GARDENy, performs merging of adjacent
dense regions (dense cells) into larger clusters. While other
options are possible, in the present version of GARDENyp,
merging of two regions is performed when their distance
along every dimension is below . The process of merging
takes place within the invocation of each instance of recursive
space partition [7]. The result of GARDEN gp, illustrated in
Figure 3c, is a cluster representation of data, consisting of the
dense cells detected in the process of recursive space division
and organized according to the larger clusters they belong to.
Since the detected clusters are just unions of adjacent dense
cells, they can be arbitrarily shaped.

This basic GARDENgyp method works well in most situ-
ations. However, for highest accuracy and best performance,
additional measures may also be useful. For example, using
a parameter K to control the minimum number of points
in a dense cell, the algorithm can prevent the creation of
many small dense cells. This would not only speed up the
process of merging, but also provide a simple way of handling
possible noise in the data, Other enhancements of the basic
GARDENyp operation include an ef cient way of computing
live regions, an ef cient data structure for storing and access-
ing points, and an ef cient way of merging dense cells [7].

GARDENyp also has a provision for splitting dense live
regions under certain conditions [7]. The need for this arises
when clusters have widely varying densities. Since & represents
the density of the sparsest region that constitutes a cluster,
in the course of the recursive space partition, a cluster with
density much higher than & could make a much wider area

than the one it actually occupies look like a dense region. In
order to depict such clusters more accurately, it is sometimes
advantageous to split even some dense live regions.

Toward this end, we adopted the following heuristics [7].
First, each live region LR is associated with its centroid,
computed as the center of all points falling in LR. If LR is
a dense region, a simple (centroid) test is usually suf cient
to determine if LR needs to be split further: a) compute C,
the center of LR; b) compute R, a rectangle centered in C
whose each side has extension of the corresponding side of LR
multiplied by a constant ¢ < 1 (e.g., 1/2); ¢) if the centroid
of LR falls outside R, then LR must be split further.

IV. DERIVING THE AGGREGATE REPRESENTATION

This section gives a high-level description of the process of
selecting the appropriate I" space partition for the aggregate
representation of data. The algorithm underlying this process,
called GARDENGgp (the subscript reads space partitioning),
takes as its input the cluster representation of data produced by
GARDENyp. In turn, GARDENgp tries to produce a T™ space
partition, possibly with region slicing, in which each cluster
is assigned to a single T region or slice.

GARDENgp also operates in three steps. The rst step
produces an intermediate representation €. It begins by
computing the minimum bounding hyper-rectangle of each
cluster (cluster MBR). Following that, the process selects an
overlay partition of the given d-dimensional space by slicing
each dimension into g equal regions, producing exactly g-d
overlapping regions. In contrast to the regions of a grid-like
space partition, each region produced along an axis i of the
overlay partition has full extension along all other dimensions.
Thereby, it overlaps all regions created by dividing other di-
mensions. As illustrated in Figure 4a, regions along any given
dimension are numbered from the high to low coordinates.

The overlay partition is used to derive the representation
Q, called the overlay representation. Each element Q[i,j,
representing a region K; ; of the overlay partition, maintains a
triple < I, L, H >, where:] is the intersect set containing the
identi ers of all clusters whose MBRs intersect R;; (whose
i-th sides fully enclose the corresponding side of R;;); L is
the low-endpoint set containing the identi ers of all clusters
whose MBRs have low endpoints in R; ;; and H is the high-
endpoint set containing the identi ers of all clusters whose
MBRs have high endpoints in R; ;.

The second step, illustrated in Figures 4a-c, operates on the
elements of the representation €2, alternating the dimensions in
their pre-determined order, In Figure 4, we alternate rst the
horizontal and then the vertical axis of the given 2-dimensional
space. While examining the elements along an axis i, the
algorithm simulates the process of line sweeping from the high
toward the low end of that dimension. The main objective of
this process is to extrapolate the regions of the nal I" space
partition, so that each I" region contains as few full cluster
MBRs as possible. However, the data distribution may be such
that this objective cannot be fully achieved.

702

; 3 2 1
(b ourput = <(C1}, x21 = 0.8} >

(a) output = <{C2,C3,C5), x11 = 0 4)>

[

(c) ouiput = <{C4,C6}, x12 = 0.12)> (d) stemg of regions.

Fig. 4. Tlustration of the GARDEN;sp operation.

The process of [ine sweeping along any given axis usually
proceeds until one nds a coordinate x; where one can draw
a dividing hyper-plane perpendicular to the axis that does
not intersect any cluster MBR.. Obviously, if either the low-
endpoint set L of the given element Q[i, ;] is empty or the
intersect set / is non-empty, one can skip that element and go
to the element Qi, j + 1". However, if the low-endpoint set L
of Qi, j] is not empty, but both its intersect set J and its high-
endpoint set A are, then one can set X; to the low coordinate
along the axis i of the corresponding region R; ; and terminate
the process of line sweeping along that dimension. Somewhat
more complex is the case when 7 is empty, but both £, and
f are not. In this case, one must examine the low and high
coordinates along the axis i of all cluster MBRs in L and H to
see if there is a dividing plane between them. If so, the desired
point x; is found; otherwise, the algorithm must examine the
element Q[i, j+ 1 of the overlay representation,

Due to the shape and size of actual clusters, it is possible
that no appropriate dividing plane along some axis i can be
found. Further complicating the matter is the requirement to
have as few clusters assigned to each T region of the space as
possible. In order to address these problems, the above process
of line sweeping must be modi ed to occasionally break a
monolithic cluster MBR across two or more " regions.

Whenever a dividing plane at a certain coordinate x; is
found, GARDENG; sets aside the clusters lying above x; along
the axis i and the value of x;. In order to prepare for the line
sweeping along the next dimension (i+1) mod d, the clusters
in the output of the current iteration are removed from all
elements of the representation Q in which they appear. This
iterative process terminates when the last group of clusters is
assigned to its own region. At that time, the regions of the

induced T space partition can be constructed from the values
x; identi ed in the process.

Assuming that the 2-dimensional space of Figure 4 is
a normalized universe [0,1°2, the line sweeping along the
horizontal axis (dimension 1) encounters a dividing line at
the coordinate x1; = 0.4. Since the clusters C2, C3 and C5 lie
above x;; along this dimension, they are included in the output
and removed from the overlay representation. In Figure 4b, the
three clusters appear dimmed.

The next iteration of line sweeping, shown in Figure 4b,
proceeds along the vertical axis (dimension 2). Based on the
rules of line sweeping, the process will identify a dividing
line at the point x;; = 0.8. The cluster C1, which lies above
the coordinate x|; along the vertical axis, is included in the
output and removed from the overlay representation. The

nal iteration, shown in Figure 4c, switches back to the rst
dimension, identifying a dividing line at x1; = 0.12 and the
clusters C4 and C6 lying above this point.

After removing the clusters C4 and C6 from the represen-
tation Q, the only remaining cluster C7 is assigned to the
remaining portion of the space. The resulting space partition
of this example has four T regions. Aside from the outer
generator whose high endpoint is < 1,1 >, this process has
identi ed two other nested generators with high endpoints
<0.4,0.8 > and < 0.12,0.8 >. In accord to the " partitioning
strategy, the low endpoint of each of these generators lies in
the origin of the space.

The third step of GARDEN sp, which is illustrated in
Figure 4d, performs slicing of all I regions in the space
partition that contain more than one cluster. The goal here
is to assign each cluster of every such T" region to its own
rectangular slice. Toward this end, all cluster MBRs within the
given region are pair-wise compared to determine the planes
that separate their respective slices. This process must take into
account that, unlike actual clusters, their MBRs could overlap.
Whenever this happens, the process must examine the actual
clusters and break them across multiple slices in such a way
that the cluster MBRs assigned to each slice do not overlap.
When the shapes of these clusters complicate this slicing, their
overlapping MBRs could be assigned to a single slice.

V. SUMMARY AND DISCUSSION

In this paper, we have described the clustering technology
of a new data engine for analytical computing, which can
ef ciently operate in high-dimensional spaces with or without
dimensionality reduction. Dimensionality reduction is natural
in many situations, in part because clusters may appear only in
a sub-dimensional space and additional dimensions may only

disperse them. Since different dimensions often convey dif-
ferent degrees of information, in many situations, eliminating
certain dimensions leads to only a marginal loss of informa-
tion [3]. Another factor that often motivates dimensionality
reduction is the ef ciency of data clustering.

However, dimensionality reduction has many disadvantages
as well. Those that are well documented include loss of certain
Clusters as well as the distortions of the spatial properties

703

Fig. 5. Visually observable accuracy of GARDENgp for synthetic and real
data in a 3D space.

and densities of clusters. Moreover, if data is clustered using
dimensionality reduction, an operation such as project clusters
onto a sub-dimensional space may trigger re-clustering of data,
which would not be the case when data is fully clustered in
the original space.

In addition, when a suf ciently large pool of fully-speci ed
data is clustered in the original space, effective classi cation of
data with missing information becomes possible. For any data
item with missing values, it is possible to have an effective
probabilistic ranking of clusters that are likely to contain this
item. Based on this ranking, one can also speculate, with fair
degree of certainty, what the possible ranges of missing values
are. When data is clustered using dimensionality reduction,
this capability is generally lost.

The data engine is currently under development. However,
some of its techniques have already been implemented as
well as fully or partially studied. In particular, numerous
experiments with both simulated and real data sets were
conducted to assess the performance of g x against several
popular multi-dimensional access methods [9]. For real data
and relatively small queries, I's;x can generate up to three
orders of magnitude fewer page accesses than the latter
indexing techniques [9].

The experiments with GARDENyp [7] show remarkable
effectiveness and ef ciency of this clustering algorithm [7].
The rst row of Figure 5 shows the results of GARDENyp
for two synthetic data distributions, each with 100,000 points,
in a 3-dimensional space. In each of the two pictures, one can
observe both the distributions of points as well as the front
edges of dense cells detected in the course of the recursive
space partition. The left picture of the second row shows the
distribution of 3-dimensional vectors derived from a set of real
multi-dimensjonal data extrapolated from an environmental

database. The displayed points are the projections of the data
set normalized to t the [0,1]? coordinate system. The corre-
sponding picture on the right shows the result of GARDEN g
for this distribution (dense cells obtained in the courses of
recursive space partition). Due to many small dense cells that
were produced, the results appear dark in the pictures. For
several data distributions, the effectiveness of GARDEN yp
was also tested in spaces with up to 40 dimensions. In each
space and every scenario, the technique detected the exact
number of clusters and matched the shape of each cluster
correctly [7].

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. IIS-0312266.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, Automatic
Subspace Clustering of High Dimensional Data for Data Mining Applica-
tions, Proc. ACM SIGMOD Int. Conf. on Management of Data, 94303,
1998.

M. Ester, H.-P. Kriegel, J. Sander and X. Xu, A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise, Proc.

2nd Int. Conf. on Knowledge Discovery and Data Mining KDD 96, 226—

231, 1996.

C. Faloutsos and K. Lin, Fastmap: A Fast Algorithm for Indexing, Data

Mining and Visvalization of Traditional and Multimedia Databases, Proc.

ACM SIGMOD Int. Conf. on Management of Data, 163174, 1995.

(4] A. Hinneburg and D.A. Keim, Optimal Grid-Clustering: Towards Break-
ing the Curse of Dimensionality in High-Dimensional Clustering, Proc.
25th Int. Conf. on Very Large Data Buases, 506317, 1999.

[5] A.K. Jain, M.N. Murthy and P.J. Flynn, Data Clustering: A Review,
ACM Computing Surveys 31(3):264-323, 1999.

[6] T. Kure, U. Catalyurek, C. Chang, A. Sussman and J. Saltz, Visualization
of Large Datasets with the Active Dala Repository, IEEE Computer
Graphics and Applications 21(4):24-33, 2001.

[7] Y. Lai and R. Orlandic, GARDENyp: Clustering High-Dimensional
Data in Original Feature Spaces, Technical Repert, Department of
Computer Science, Illinois Institute of Technology, 2004,

[8] R. Orlandic, Effective Management of Hierarchical Storage Using Two
Levels of Data Clustering, Proc. 20th IEEE Conf. on Mass Storage
Systems and Technologies, 270-279, 2003.

[9) R. Orlandic and J. Lukaszuk, An Effective Framework for Scalable
Retrieval of Multi-Dimensional Data, Technical Report, Department of
Computer Science, Illinois Institute of Technology, 2004,

[10] R. Orlandic, J. Lukaszuk and C. Swietlik, The Design of a Retrieval
Technique for High-Dimensional Data on Tertiary Storage, SIGMOD
Record 31(2):15-21, 2002.

[11] E.J. Otoo, A. Shoshani and S. Hwasng, Clustering High Dimensional
Massive Scienti ¢ Datasets, Proc. 13th Int. Conf. on Scienti ¢ and
Statistical Darabase Management SSDBM 01, 147157, 2001.

[12] G. Sheikholeslami, S. Chatterjee and A. Zhang, WaveCluster: A Mulli-
resolution Clustering Approach for Very Large Spatial Databases, Proc.
24th Int. Conf. on Very Large Data Bases, 428-439, 1998.

[13] A. Shoshani, L.M. Bemardo, H. Nordberg, D. Rotem and A. Sim,

Multidimensional Indexing and Query Coordination for Tertiary Storage
Management, Proc. 11t Int. Conf. on Scienti ¢ and Statistical Darabase
Managemenr SSDBM 99, 214225, 1999.

[14] W. Wang, J. Yang and R. Muntz, STING: A Statistical Information
Grid Approach to Spatial Data Mining, Proc. 23rd Int. Conf. on Very
Large Dara Bases, 186393, 1997,

[15] T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: An Ef cient Data
Clustering Method for Very Large Databases, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 103314, 1996,

[2

_—

[3

[laie}

704

