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Abstract — The problem of similarity search in time series
databases has gained great significance in the recent times. In
this paper we introduce a new and simple approach for
performing similarity search over time series data. This
technique is based on the observation that similar time
sequences will have similar variations in their slopes. The
proposed technique is capable of handling queries of variable
lengths and works irrespective of global scaling or shrinking
of time sequences. It is also capable of handling vertical shifts.

L INTRODUCTION

Time series constitute a large portion of data stored in
computers, Some typical examples include stock prices,
biomedical data, atmospheric data, and so on. In last
decade, there have been several attempts to model time
series data, to design languages to query such data, and to
develop access structures to efficiently process queries on
such data. The problem of similarity search in time series
data is important and non-trivial.

In order to perform similarity search on time series data,
we need indexing methods that are capable of supporting
efficient retrieval and matching of time series data. Most of
the indexing methods for multi-dimensional data such as
the R-tree [1] and the R*-tree [2] degrade performance at
dimensionalities greater than 8-10 [3] and eventually
perform almost like sequential scanning algorithms at high
dimensionalities. Thus, to utilize multi-dimensional
indexing techniques, it is essential to first perform
dimension reduction on time series data. Dimension
reduction  maps  high-dimensional data to a lower
dimension space. Next, some distance measure such as the
Euclidean Distance may be used to calculate the distance
and hence the similarity between any two time sequences,

There are many ways to perform dimension reduction.
Some of the commonly used methods for performing
dimension reduction include Discrete Fourier Transform
(DFT) [4, 5, 6, 7], Discrete Wavelet Transform (DWT) [8,
9, 10, 11, 12], Singular Value Decomposition (SVD) [13]
and Piecewise Aggregate Approximation (PAA) [14].

The DFT is very well suited for naturally occurring
signals which are sinusoidal in nature but it is ill-suited for
representing signals having discontinuities,

The Haar is the most commonly used Wavelet
Transform used for dimension reduction. As the basis
function for Haar is not smooth, the Haar Wavelet
Transform approximates any signal by a ladder like
structure. Thus the Haar Wavelet Transform is not likely to
approximate a smooth function using only a few
coefficients. So the number of coefficients to be added
must be high. Finding wavelets having more continuous
derivatives is still an active area of research.
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The SVD technique uses the KL transform for
performing dimension reduction. The key weakness of this
approach is that the SVD is data dependent. This means
that it uses the dataset to determine new basis vectors. So it
has to be recomputed whenever a database item is updated.
Thus, the recomputation time becomes infeasible for
practical purposes especially when the database is very
large.

In case of PAA, the time sequence is divided into equal
length segments. The corresponding feature sequence
comprises mean values of each segment. But the means
representing  each  segment  give only a rough
approximation of each time sequence.

Most of the approaches for performing similarity search
in time series data developed so far rely on dimension
reduction. This may lead to loss of information of some
kind.

In this paper, we introduce a novel technique for
similarity search in time series databases. It is based on the
assumption that similar time sequences will have similar
variations in their slopes. The proposed technique is simple
and capable of handling variable length queries on time
series data. It is also capable of handling different scaling
factors and baselines. Moreover there is no need to
perform any kind of data compression by means of
dimension reduction. The performance of the proposed
technique is independent of the number of datapoints in the
candidate or query time sequences.

The rest of the paper is organized as follows. Section I
gives related work. Section III describes the proposed
approach. In Section IV, we give a case study and finally
conclusions and directions for future work are covered in
Section V,

1I. RELATED WORK

In this section we briefly discuss some key approaches
for performing similarity search in time series data based
on dimension reduction.

Agrawal et al. [4] used the Discrete Fourier Transform to
perform dimension reduction, The DFT was used to map
the time sequences to the frequency domain and the index
so built was called the F-index. For most sequences of
practical interest, the low frequency coefficients are strong.
Thus the first few Fourier coefficients are used to represent
the time sequence in frequency domain. These coefficients
were indexed using the R*-tree [2] for fast retrieval. The
basis for this indexing technique is Parseval’s theorem.
The Parseval’s theorem guarantees that the distance
between two sequences in the frequency domain is the
same as the distance between them in the time domain. For
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a range query the F-index returns a set of sequences that
are at a Euclidean Distance € from the query sequence.

The F-index may raise false alarms but does not
introduce false dismissals. The actual matches are obtained
in a post-processing step wherein the distance between the
sequences are calculated in the time domain and those
sequences which are within e distance are retained and the
others are dismissed. The F-index typically handles ‘whole
matching’ queries.

Faloutsos et al. generalized the F-index method in [15]
and called it the ST-index, In this technique, subsequence
queries are handled by mapping data sequences into a
small set of multidimensional rectangles in feature space.
These rectangles are indexed using spatial access methods
like the R*-tree [2].

A sliding window is used to extract features from the
data sequence resulting in a trail in the feature space, These
trails are divided into sub-trails which can be represented
by their Minimum Bounding Rectangles (MBR). Thus, in
place of storing all the points in a trail, only a few MBRs
are stored. When a query is presented to the database, all
the MBRs intersecting the query region are retrieved. This
guarantees no false dismissals but also raises some false
alarms as sub-trails that do not intersect the query region
but their MBRs are also retrieved.

Chan et al. [8] have proposed to use the DWT in place of
DFT for performing dimension reduction in time series
data. Unlike the DFT which misses the time localization
of sequences, the DWT allows time as well as frequency
localization concuwrently. The DWT thus bears more
information of signals in contrast to DFT in which only
frequencies are considered. The approach in [8] employed
the Haar Wavelet Transform for mapping high-
dimensional time series data to lower dimensions.

A data dependent indexing scheme was proposed in [13]
and is known as the SVD method for dimension reduction.
The database consists of n-dimensional points, We map
them on a k-dimensional subspace, where k < n,
maximizing the variations in the chosen dimensions. An
important drawback of this approach is the deterioration of
performance upon incremental update of the index.
Therefore the new projection matrix should be calculated
and the index tree has to be reorganized periodically to
keep up the search performance.

In PAA [14], each time sequence say of length & is
segmented into m equal length segments such that m is a
multiple of k. If that is not the case, then the sequence is
padded with zeros in order to perform the segmentation.
The averages of segments together form the new feature
vector for the sequence. The correct selection of m is very
important because if m is very large, the approximation
becomes very rough but if m is very small, the
performance deteriorates.

A. Euclidean Distance

Mostly similarity search methods utilize the Euclidean
distance model for calculating the similarity between the
query and candidate sequence. According to this model, if
the Euclidean Distance D (X, Y) between two time
sequences X and ¥ of length n is less than a threshold €,
then the two sequences are said to be similar.

y -axis

time
Fig.1. Two similar time sequences with vertical shifls between them

Thus:

D(X,Y)= }Z (x. —y)? (1)
i=1

There is a major shortcoming in the Euclidean distance
model. According to Fig. 1, X and V¥ are similar to each
other as Y is obtained just by vertically shifting X. But
when X and Y are compared using (1), they may be
evaluated as dissimilar due to the vertical shifts existing
between the two at eachi. When  compared by our
proposed approach, X and Y will be interpreted as similar
even though a vertical shift exists between them. The
reason being that they have similar cumulative variations
in slopes.

III. THE PROPOSED APPROACH

We propose to use the cumulative variation in slopes for
performing similarity search in time series data. In this
paper, we assume that a time series consists of a sequence
of real numbers which represent the values of a measured
parameter at equal intervals of time. Let the time series
database consist of p time sequences designated by X,
X>... X,. Each time sequence X; in turn can be represented
as < (L, Vi) (Lz, Yi2)oo. (tin Yin) > where n is the number of
samples in the time sequence,

In the proposed approach, each of the candidates X; in
the time series database is first scaled along the time axis
so that their time axes become equal to some desired time
ts. The selection of ¢4 is done by the user and may depend
on the domain of application of the data. In our technique,
scaling along the time axis is done to help compare
variable length time sequences. For example, a 5-year sales
pattern of a Company A can be compared to a 10-year
sales pattern of Company B. Another example where
scaling can play a crucial role is the comparison of the
growth of a tumour for the past 10-months versus the
growth of the tumour for past 10-days. In order to avoid
any distortions that may arise due to time scaling, the
values along the y-axis for each X; are also scaled
proportionately. Thus each transformed X; denoted by X,
may be represented as < (L, Yir b (42, Yiz )ooe (tin,s Y ) >
where:

tq‘ = Il‘,{ * (Ia'/tin)
and yy; =y *(la/ liy) (2)
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In our approach, we have considered variations in the y-
values of each X, about the mean as the range of y-values
may vary substantially. Thus, each y, is divided by the
corresponding mean for y-values y,, to obtain vy where:

Ym = (yiil+ y:’2-+~-‘+:ym')/ n (3)

This is followed by dividing each of the time sequences
in the database into same number of small, equi-width
strips along the time-axis.

The same procedure is repeated for any query Q@ for
similarity search. Or in other words, the query is first time
scaled to ¢; and then scaled proportionately along the y-
axis followed by dividing the y-values by their mean. The
resulting sequence is divided into small, equi-width strips.

Thus, we consider both the query and the candidate to be
comprised of same number of small strips along the time
axis .The strips have different heights but same widths
along the time-axis as shown in Fig 2.

Finally, we compute the parameter for variations of
slopes between any two sequences O and C as:

JZ Go — 54} “)

where S, and S, are the slopes for the j* strip in the
candidate time sequence € ( in the present case X, ) and
the query time sequence Q respectively :

S0, C) =

Sc_.‘ = {y:rurjﬁ-.')" Yicj “I/HAI (5)
and Sy = { Ve ivs) - w )/ At 6)

We assume in (5) and (6) that the starting and ending
coordinates for the J* strip of the candidate are given by
(1 i Yy Jand (i o1y, Vie G ”ﬁ)' Similarly, the starting
and ending coordinates for the j’ strip of the query time
sequence are given by ( ', y; ) and ( Eati+ny> Yq g+1)-
And At is the width of each of the strips and is a constant.
The choice of Ar may be user specified or domain specific.
The important thing to note about the selection of 4 is that
its value should be optimally selected so that it is neither
too  small (because that may lead to excessive
computations) nor too large (loss of details).

Ideally for two exactly similar time sequences, the value
of the parameter S (Q, C} must be zero. Practically, the
smaller the value of § (Q, C), the more is the similarity
between the time sequences under comparison. For range
queries and nearest-neighbour queries we may choose to
have § (Q, C) < / where / specifies some degree of
tolerance allowed while performing similarity search in the
time-series database. The overal] strategy thus involves the
following steps:

Step 1: Scaling of data along the time-axis to allow
variable length queries.

Step 2: Correspondingly scaling the values of y-ordinates
to avoid any possibility of data distortions.

Step 3: Dividing each value along the y-axis by the mean
of the y-values.

Step 4: Dividing each time sequence into same number of
small, equi-width strips.

Step 5: Computing the parameter S (Q, C) for variations in

.

Query (Q,)
Candidate((C)
: O

time {

Fig.2. Query and candidate time sequences divided into strips

slopes of the two time sequences under comparison.
Ideally, it should be zero.

IV. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed
technique by considering synthetic sample time sequences
as the test data.

The first set of sample sequences HI, H2 and HJ-
Reverse are shown in Fig. 3. The scaled data is shown in
Fig. 4. After the proposed technique is applied to them (1,
= 2.0), the resultant transformed time sequences are
designated by HIt, H2t and Hi-Reverser are shown Fig. 5.
This is followed by the computation of parameter for
variation in slopes as in (4) between the query (HIr) and
the candidate time sequences (H2t, HI-Reverset). We have
also compared our results with the commonly used
similarity model based on Euclidean distance as in (1).

Table I clearly indicates the inability of the Euclidean
distance model to identify similar time sequences which
are globally expanded versions of each other. As shown in
Fig. 3, sequence pair H/ and H2 are such an example. It
can be seen from Table I that the Euclidean distance
between H1t and H2¢ is less than that between HJt and Hi-
Reverset. On the contrary, the proposed technique shows
that the variation in slopes of HIr and HI- Reverset is
about 6 times that between HJt and H2r. The greater the
variation, the more is the dissimilarity. Thus, in turn, as per
our approach, /7 and H2 are very similar as compared to
H1 and HI-Reverse as can also be seen in Fig. 3.

Similarly, sequences VI, V2 and V1’ are shown in Fig. 6.
After applying our approach, finally transformed VI, V2
and VI’ are designated by V/t, V2r and VI’t and are shown
in Fig. 7. Taking V1t as the query sequence in this case, the
results are shown in Table II. In this case, the results as
indicated by parameter S as well as by the Euclidean
distance approach are parallel. Thus it can be concluded
that VI and V2 are very dissimilar to each other in contrast
to V7 and VI’ which are quite similar to each other.

Fig. 8 shows another set - V3, V4 and V5 where V3 is
taken as the query and V4, V5 are candidate time
sequences. The transformed sequences are shown in Fig 9
and are designated by V3, V4r and V57, The results of the
proposed approach and the Euclidean distance model are
shown in Table III. As expected, the variations in the
slopes S between V3¢ and V47 is almost 200% that of the
variations in slopes between V37 and V5. So we conclude
that V3 and V5 are similar to each other and on the
contrary V3 and V4 are very dissimilar. The results of the
Euclidean distance model also indicate the same.
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Fig.3. The sequence H/ is taken as the query and H2 and H/- Reverse are
the candidale time sequences
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Fig.4. Scaled sequences designated by Hls , H2s and H1- Reverses
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Fig.5. Finally transformed sequences H/, H2, and HI-Reverse designated
by HIt, H21, and H1-Reverset

TABLE 1

PARAMETER FOR VARIATIONS IN SLOPES S (@, C) VERSUS
EUCLIDEAN DISTANCE D (@, C)

Sequence Pairs | Parameter S | Euclidean Distance D
Hir, H2t 1.19 2.81
Hit, Hl-Reverset 9.86 1.66

0.8

0.4
time
R i
q 02 0.4 06 08 1
Vi
va
vi'

Fig.6. The sequence V/ is taken as the query and V2 and VI’ as the
candidate time sequences
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Fig.7. Finally translormed sequences VI, V2, and VI’ designated by Vi1,
V2t and VIt

TABLE II

PARAMETER FOR VARIATIONS IN SLOPES § (@, C) VERSUS
b Q)

Sequence Pairs | Parameter § | Buclidean Distance D
Vit V21 20.83 6.14
Vi, Vi't 3.37 2.36

We have also considered NI, N2 and N3 (Fig. 10) as the
next sample data time sequences where NI is taken as the
query and N2 and N3 are taken as the candidate sequences.
The transformed sequences are shown in Fig. 11. It can be
clearly seen from Table IV that NIt and N2r are very
similar to each other as compared to NIt and N3t The
Euclidean distance computations also indicate the same.

Fig. 12 shows synthetically generated random sample
data. The results of the proposed approach have been
shown in Table V. Fig. 13 shows the transtormed
sequences.
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Fig.8. The sequence V3 is taken as the query and V4 and V5 are the
candidate time sequences
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Fig.11. Finally transformed sequences designated by NJr, N2t, and N3t
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Fig.9. Finally transformed sequences designated by V3, V4e, and V51

TABLE 111
PARAMETER FOR VARIATIONS IN SLOPES § (Q, C) VERSUS
D@ C)
Sequence Pairs | Parameter § | Euclidean Distance D
V3, Vdi 26.93 4.18
Vii, V5t 12,28 1.99
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Fig.10. The sequence N/ is taken as the query and N2, N3 are taken as the
candidate time sequences

TABLE IV
PARAMETER FOR VARIATIONS IN SLOPES S (Q, C) VERSUS
D(Q C)
Sequence Pairs | Parameter § | Euclidean Dislance D
Ni1, N2t 2.34 1.69
Nit, N3 3.07 2.62
aad?
34
2.7
24
24
18
1.54
12 (fb
0.9 TJL/\\‘
06 /\\
M Ny
— s \At A . AL
9% 10 20 30 40 50 0 70 20 90 1CO 110 120 130

Random sample 1
Randem Sample 2
Random Sample 3

Fig.12. The sequence Sample / is taken as the query and Samples 2 and 3
are taken as the candidate time sequences
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Sampie 1t
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Fig.13. Finally transformed sequences
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TABLE V
PARAMETER FOR VARIATIONS IN SLOPES 5 (@, C) VERSUS

D{(Q, C)
Sequence Pairs Parameter S | Euclidean Distance D
Sample 11, Sample2t 0.39 3.28
Sumple 11, Sample3r 0.49 4.12

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simple and effective technique for
performing similarity search in time series data has been
proposed. The given time sequences are time scaled and
brought to the same time range. The y-values are also
proportionately scaled by the same factor and only the
variations in the y-values about the mean are retained. This
way the given time sequences are transformed. The
computation of the parameter for variations in slopes is
done on the transformed data. Experiments show that the
proposed technique can handle vertical shifts in the time
sequence data, global scaling of the data and allows
variable length queries. The proposed approach does not
involve any dimension reduction and hence the data
distortions arising out of it are avoided. Euclidean distance
model has also been used to compare the test data
considered. Our approach provides quantitatively better
comparisons.

In this approach we have assumed that a time series
comprises of samples of a single measured variable against
time. In future work, we intend to broaden its scope so that
it can handle multivariable time sequences, We propose to
further refine our technique by assigning weights to
locations of the slopes along the time axis. We also intend
to develop alternate parameters for assessing similarity in
time series data, which may be used individually, or in
conjunction with each other.
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